From: =?gb2312?B?08kgV2luZG93cyBJbnRlcm5ldCBFeHBsb3JlciA4ILGjtOY=?= Subject: How to publish Linked Data on the Web Date: Tue, 5 Oct 2010 11:21:25 +0800 MIME-Version: 1.0 Content-Type: multipart/related; type="text/html"; boundary="----=_NextPart_000_0013_01CB647F.7270F260" X-MimeOLE: Produced By Microsoft MimeOLE V6.1.7600.16543 这是 MIME 格式的多方邮件。 ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/ =EF=BB=BF How to publish = Linked Data on the Web

How to Publish Linked Data on the Web

Authors:=20
Chris=20 Bizer (Web-based Systems Group, Freie Universit=C3=A4t Berlin, = Germany)=20
Richard Cyganiak = (Web-based=20 Systems Group, Freie Universit=C3=A4t Berlin, Germany)=20
Tom Heath = (Knowledge=20 Media Institute, The Open University, Milton Keynes, UK)=20
This version:=20
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTu= torial/20070727/=20
Latest version:=20
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/=20

Abstract

This document provides a tutorial on how to publish Linked Data on = the Web.=20 After a general overview of the concept of Linked Data, we describe = several=20 practical recipes for publishing information as Linked Data on the = Web.

Table of Contents

1. Introduction: Linked Data on the Web

The goal of Linked Data is to enable people to share structured data = on the=20 Web as easily as they can share documents today.

The term Linked Data was coined by Tim Berners-Lee in his Linked Data = Web=20 architecture note. The term refers to a style of publishing and = interlinking=20 structured data on the Web. The basic assumption behind Linked Data is = that the=20 value and usefulness of data increases the more it is interlinked with = other=20 data. In summary, Linked Data is simply about using the Web to create = typed=20 links between data from different sources.

The basic tenets of Linked Data are to:

  1. use the RDF=20 data model to publish structured data on the Web=20
  2. use RDF=20 links to interlink data from different data sources

Applying both principles leads to the creation of a data commons on = the Web,=20 a space where people and organizations can post and consume data about = anything.=20 This data commons is often called the Web of Data or Semantic Web.

The Web of Data can be accessed using Linked Data browsers, just as = the=20 traditional Web of documents is accessed using HTML browsers. However, = instead=20 of following links between HTML pages, Linked Data browsers enable users = to=20 navigate between different data sources by following RDF links. This = allows the=20 user to start with one data source and then move through a potentially = endless=20 Web of data sources connected by RDF links. For instance, while looking = at data=20 about a person from one source, a user might be interested in = information about=20 the person's home town. By following an RDF link, the user can navigate = to=20 information about that town contained in another dataset.

Just as the traditional document Web can be crawled by following = hypertext=20 links, the Web of Data can be crawled by following RDF links. Working on = the=20 crawled data, search engines can provide sophisticated query = capabilities,=20 similar to those provided by conventional relational databases. Because = the=20 query results themselves are structured data, not just links to HTML = pages, they=20 can be immediately processed, thus enabling a new class of applications = based on=20 the Web of Data.

The glue that holds together the traditional document Web is the = hypertext=20 links between HTML pages. The glue of the data web is RDF links. An RDF = link=20 simply states that one piece of data has some kind of relationship to = another=20 piece of data. These relationships can have different types. For = instance, an=20 RDF link that connects data about people can state that two people know = each=20 other; an RDF link that connects information about a person with = information=20 about publications in a bibliographic database might state that a person = is the=20 author of a specific paper.

There is already a lot of structured data accessible on the Web = through Web=20 2.0 APIs such as the eBay,=20 Amazon, = Yahoo, and = Google Base = APIs.=20 Compared to these APIs, Linked Data has the advantage of providing a = single,=20 standardized access mechanism instead of relying on diverse interfaces = and=20 result formats. This allows data sources to be:

Having provided a background to Linked Data concepts, the rest of = this=20 document is structured as follows: Section=20 2 outlines the basic principles of Linked Data. Section=20 3 provides practical advice on how to name resources with URI = references. Section=20 4 discusses terms from well-known vocabularies and data sources = which should=20 be reused to represent information. Section=20 5 explains what information should be included into RDF descriptions = that=20 are published on the Web. Section=20 6 gives practical advice on how to generate RDF links between data = from=20 different data sources. Section=20 7 presents several complete recipes for publishing different types = of=20 information as Linked Data on the Web using existing Linked Data = publishing=20 tools. Section=20 8 discusses testing and debugging Linked Data sources. Finally Section=20 9 gives an overview of alternative discovery mechanisms for Linked = Data on=20 the Web.

2. Basic Principles

This chapter describes the basic principles of Linked Data. As Linked = Data is=20 closely aligned to the general architecture of the Web, we first = summarize the=20 basic principles of this architecture. Then we give an overview of the = RDF data=20 model and recommend how the data model should be used in the Linked Data = context.

2.1. Web Architecture

This section summarizes the basic principles of the Web Architecture = and=20 introduces terminology such as resource and = representation.=20 For more detailed information please refer to the Architecture of the World Wide = Web, Volume=20 One W3C recommendation and the current findings of the = W3C Technical Architecture Group=20 (TAG).

Resources

To publish data on the Web, we first have to identify the items = of=20 interest in our domain. They are the things whose properties and=20 relationships we want to describe in the data. In Web Architecture = terminology,=20 all items of interest are called resources.

In 'Dereferencing=20 HTTP URIs' the W3C Technical = Architecture Group (TAG) distinguish between two kinds of resources: = information resources and non-information resources = (also=20 called 'other resources') . This distinction is quite important in a = Linked Data=20 context. All the resources we find on the traditional document Web, such = as=20 documents, images, and other media files, are information resources. But = many of=20 the things we want to share data about are not: People, physical = products,=20 places, proteins, scientific concepts, and so on. As a rule of thumb, = all=20 =E2=80=9Creal-world objects=E2=80=9D that exist outside of the Web are = non-information=20 resources.

Resource Identifiers

Resources are identified using Uniform= Resource=20 Identifiers (URIs). In the context of Linked Data, we restrict=20 ourselves to using HTTP URIs only and avoid other URI schemes such as URNs and = DOIs.= HTTP=20 URIs make good names for two reasons: They provide a simple way to = create=20 globally unique names without centralized management; and URIs work not = just as=20 a name but also as a means of accessing information about a resource = over the=20 Web. The preference for HTTP over other URI schemes is discussed at = length in=20 the W3C TAG draft finding URNs, = Namespaces=20 and Registries.

Representations

Information resources can have representations. A = representation is=20 a stream of bytes in a certain format, such as HTML, RDF/XML, or JPEG. = For=20 example, an invoice is an information resource. It could be represented = as an=20 HTML page, as a printable PDF document, or as an RDF document. A single=20 information resource can have many different representations, e.g. in = different=20 formats, resolution qualities, or natural languages.

Dereferencing HTTP URIs

URI Dereferencing is the process of looking up a URI on the = Web in=20 order to get information about the referenced resource. The W3C TAG = draft=20 finding about Dereferencing=20 HTTP URIs introduced a distinction on how URIs identifying = information=20 resources and non-information resources are dereferenced:

Note: There are two approaches that data publishers can use to = provide=20 clients with URIs of information resources describing non-information = resources:=20 Hash URIs and 303 redirects. This document focuses mostly on the 303 = redirect=20 approach. See = Section=20 4.3 of Cool URIs for the Semantic Web for a discussion of = the=20 tradeoffs between both approaches.

Content Negotiation

HTML browsers usually display RDF representations as raw RDF code, or = simply=20 download them as RDF files without displaying them. This is not very = helpful to=20 the average user. Therefore, serving a proper HTML representation in = addition to=20 the RDF representation of a resource helps humans to figure out what a = URI=20 refers to.

This can be achieved using an HTTP mechanism called content=20 negotiation. HTTP clients send HTTP headers with each request to = indicate=20 what kinds of representation they prefer. Servers can inspect those = headers and=20 select an appropriate response. If the headers indicate that the client = prefers=20 HTML, then the server can generate an HTML representation. If the client = prefers=20 RDF, then the server can generate RDF.

Content negotiation for non-information resources is usually = implemented in the following way. When a URI identifying a = non-information=20 resource is dereferenced, the server sends a 303 redirect to an = information=20 resource appropriate for the client. Therefore, a data source often = serves three=20 URIs related to each non-information resource, for instance:

The picture below shows how dereferencing a HTTP URI identifying a=20 non-information resource plays together with content negotiation:

  1. The client performs an HTTP GET request on a URI identifying a=20 non-information resource. In our case a vocabulary URI. = If the=20 client is a Linked Data browser and would prefer an RDF/XML = representation of=20 the resource, it sends an Accept: application/rdf+xml = header=20 along with the request. HTML browsers would send an Accept:=20 text/html header instead.=20
  2. The server recognizes the URI to identify a non-information = resource. As=20 the server can not return a representation of this resource, it = answers using=20 the HTTP 303 See Other response code and sends the client = the URI=20 of an information resource describing the non-information resource. In = the RDF=20 case: RDF content location.=20
  3. The client now asks the server to GET a representation of this = information=20 resource, requesting again application/rdf+xml.=20
  4. The server sends the client a RDF/XML document containing a = description of=20 the original resource vocabulary URI.

3D"Schematic

A complete example of a HTTP session for dereferencing a URI = identifying a=20 non-information resource is given in Appendix=20 A.

URI Aliases

In an open environment like the Web it often happens that different=20 information providers talk about the same non-information resource, for = instance=20 a geographic location or a famous person. As they do not know about each = other,=20 they introduce different URIs for identifying the same real-world = object. For=20 instance: DBpedia a data source providing information that has been = extracted=20 from Wikipedia uses the URI http://dbpedia.org/resource/B= erlin=20 to identify Berlin. Geonames is a data source providing information = about=20 millions of geographic locations uses the URI http://sws.geonames.org/2950159= / to=20 identify Berlin. As both URIs refer to the same non-information = resource, they=20 are called URI aliases. URI aliases are common on the Web of Data, as it = can not=20 realistically be expected that all information providers agree on the = same URIs=20 to identify a non-information resources. URI aliases provide an = important social=20 function to the Web of Data as they are dereferenced to different = descriptions=20 of the same non-information resource and thus allow different views and = opinions=20 to be expressed. In order to still be able to track that different = information=20 providers speak about the same non-information resource, it is common = practice=20 that information providers set owl:sameAs links = to URI=20 aliases they know about. This practice is explained in Section=20 6 in more detail.

Associated Descriptions

Within this tutorial we use a new term which is not part of the = standard Web=20 Architecture terminology but useful in the Linked Data context. The term = is=20 associated description and it refers to the description of a=20 non-information resource that a client obtains by dereferencing a = specific URI=20 identifying this non-information resource. For example: Deferencing the = URI http://dbpedia.org/resource/B= erlin=20 asking for application/rdf+xml gives you, after a redirect, = an=20 associated description that is equal to the RDF description of http://dbpedia.org/resource/B= erlin=20 within the information resource http://dbpedia.org/data/Berlin. Using=20 this new term makes sense in a Linked Data context as it is common = practice to=20 use multiple URI aliases to refer to the same non-information resource = and also=20 because different URI aliases dereference to different descriptions of = the=20 resource.

2.2. The RDF Data Model

When publishing Linked Data on the Web, we represent information = about=20 resources using the Resource=20 Description Framework (RDF). RDF provides a data model that is = extremely=20 simple on the one hand but strictly tailored towards Web architecture on = the=20 other hand.

In RDF, a description of a resource is represented as a number of=20 triples. The three parts of each triple are called its=20 subject, predicate, and object. A triple = mirrors the=20 basic structure of a simple sentence, such as this one:

  =
Chris     has the email address    =
chris@bizer.de .

(subject)        (predicate)            =
(object)

The subject of a triple is the URI identifying the described = resource. The=20 object can either be a simple literal value, like a string, = number, or=20 date; or the URI of another resource that is somehow related to the = subject. The=20 predicate, in the middle, indicates what kind of relation exists between = subject=20 and object, e.g. this is the name or date of birth (in the case of a = literal),=20 or the employer or someone the person knows (in the case of another = resource).=20 The predicate is a URI too. These predicate URIs come from=20 vocabularies, collections of URIs that can be used to represent = information about a certain domain. Please refer to Section=20 4 for more information about which vocabularies to use in a Linked = Data=20 context.

Some people like to imagine a set of RDF triples as an RDF graph. The = URIs=20 occurring as subject and object URIs are the nodes in the graph, and = each triple=20 is a directed arc (arrow) that connects the subject to the object.

Two principal types of RDF triples can be = distinguished,=20 Literal Triples and RDF Links:

Literal Triples
have an RDF literal such as a string, number, or date as the = object.=20 Literal triples are used to describe the properties of resources. For=20 instance, literal triples are used to describe the name or date of = birth of a=20 person.=20
RDF Links
represent typed links between two resources. RDF links consist of = three=20 URI references. The URIs in the subject and the object position of the = link=20 identify the interlinked resources. The URI in the predicate position = defines=20 the type of the link. For instance, an RDF link can state that a = person is=20 employed by an organization. Another RDF link can state that = the=20 persons knows certain other people.=20

    RDF links are the foundation for the Web of Data. Dereferencing the = URI=20 that appears as the destination of a link yields a description of the = linked=20 resource. This description will usually contain additional RDF links = which=20 point to other URIs that in turn can also be dereferenced, and so on. = This is=20 how individual resource descriptions are woven into the Web of Data. = This is=20 also how the Web of Data can be navigated using a Linked Data browser = or=20 crawled by the robot of a search engine.

    Let's take an RDF browser like Disco or Tabulator as an example. = The surfer=20 uses the browser to display information about Richard from his FOAF = profile.=20 Richard has identified himself with the URI http://richard.cygania= k.de/foaf.rdf#cygri.=20 When the surfer types this URI into the navigation bar, the browser=20 dereferences this URI over the Web, asking for content type=20 application/rdf+xml and displays the retrieved = information (click=20 here to have Disco do this). In his profile, Richard has stated = that he is=20 based near Berlin, using the DBpedia URI http://www4.wiwiss.fu-berlin.de/rdf_browse= r/?browse_uri=3Dhttp%3A//dbpedia.org/resource/Berlin=20 as URI alias for the non-information resource Berlin. As the surfer is = interested in Berlin, he instructs the browser to dereference this URI = by=20 clicking on it. The browser now dereferences this URI asking for=20 application/rdf+xml.

    3D"Dereferencing

    After being redirected with a HTTP 303 response code, the browser = retrieves=20 an RDF graph describing Berlin in more detail. A part of this graph is = shown=20 below. The graph contains a literal triple stating that Berlin has = 3.405.259=20 inhabitants and another RDF link to a resource representing a list of = German=20 cities.

    3D"Dereferencing

    As both RDF graphs share the URI http://dbpedia.org/resource/B= erlin,=20 they naturally merge together, as shown below.

    3D"Dereferencing

    The surfer might also be interested in other German cities. = Therefore he=20 lets the browser dereference the URI identifying the list. The = retrieved RDF=20 graph contains more RDF links to German cities, for instance, Hamburg = and=20 M=C3=BCnchen as shown below.

    3D"Dereferencing

    Seen from a Web perspective, the most valuable RDF links are those = that=20 connect a resource to external data published by other data sources, = because=20 they link up different islands of data into a Web. Technically, such = an=20 external RDF link is a RDF triple which has a subject URI from one = data source=20 and an object URI from another data source. The box below contains = various=20 external RDF links taken from different data sources on the Web.

    Examples of External RDF Links

    # Two RDF links =
    taken from DBpedia
    
    <http://dbpedia.org/resource/Berlin>
    
        owl:sameAs <http://sws.geonames.org/2950159/> . =20
    
    <http://dbpedia.org/resource/Tim_Berners-Lee>
    
        owl:sameAs =
    <http://www4.wiwiss.fu-berlin.de/dblp/resource/person/100007> .=20
    
    
    
    # RDF links taken from Tim Berners-Lee's FOAF profile
    
    <http://www.w3.org/People/Berners-Lee/card#i>
    
        owl:sameAs <http://dbpedia.org/resource/Tim_Berners-Lee> ;
    
        foaf:knows <http://www.w3.org/People/Connolly/#me> .
    
    
    
    # RDF links taken from Richard Cyganiaks's FOAF profile
    
    <http://richard.cyganiak.de/foaf.rdf#cygri>
    
        foaf:knows <http://www.w3.org/People/Berners-Lee/card#i> ;
    
        foaf:topic_interest <http://dbpedia.org/resource/Semantic_Web> =
    .

    Benefits of using the RDF Data Model in the Linked Data = Context

    The main benefits of using the RDF data model in a Linked Data = context are=20 that:

    • Clients can look up every URI in an RDF graph over the Web to = retrieve=20 additional information.=20
    • Information from different sources merges naturally.=20
    • The data model enables you to set RDF links between data from = different=20 sources.=20
    • The data model allows you to represent information that is = expressed=20 using different schemata in a single model.=20
    • Combined with schema languages such as RDF-S or OWL, the data model = allows you=20 to use as much or as little structure as you need, meaning that you = can=20 represent tightly structured data as well as semi-structured data. =

    RDF Features Best Avoided in = the Linked=20 Data Context

    In order to make it easier for clients to merge and query your = data, we=20 recommend not to use the full expressivity of the RDF data model, but = a subset=20 of the RDF features. Especially:

    • We discourage the use of blank=20 nodes. It is impossible to set external RDF links to a blank = node, and=20 merging data from different sources becomes much more difficult when = blank=20 nodes are used. Therefore, all resources of any importance should be = named=20 using URI references. Note that the current FOAF = specification has=20 also dropped blank nodes in favour of URI references (see = rdf:about=3D"#me" in=20 their example, and Tim Berners-Lee's Give yourself = a URI=20 post on the topic).=20
    • We discourage the use of RDF=20 reification as the semantics of reification are unclear and as = reified=20 statements are rather cumbersome to query with the SPARQL query = language.=20 Metadata can be attached to the information resource instead, as = explained=20 in Section=20 5.=20
    • You should think twice before using RDF = collections or RDF containers = as they do=20 not work well together with SPARQL. Does = your=20 application really need a collection or a container or can the = information=20 also be expressed using multiple triples having the same predicate? = The=20 second option makes SPARQL queries straight forward.

    3. Choosing URIs

    Resources are named with URI references. When publishing Linked = Data, you=20 should devote some effort to choosing good URIs for your = resources.

    On the one hand, they should be good names that other = publishers=20 can use confidently to link to your resources in their own data. On = the other=20 hand, you will have to put technical infrastructure in place to make = them=20 dereferenceable, and this may put some constraints on what = you can=20 do.

    This section lists, in loose order, some things to keep in = mind.

    • Use HTTP URIs for everything. The http:// scheme is the = only=20 URI scheme that is widely supported in today's tools and = infrastructure. All=20 other schemes require extra effort for resolver web services, = dealing with=20 identifier registrars, and so on. The arguments in favour of using = HTTP are=20 discussed in several places, e.g. in Names = and=20 addresses by Norman Walsh, and URNs,=20 Namespaces and Registries (draft) by the W3C TAG.=20
    • Define your URIs in an HTTP namespace under your control, where = you=20 actually can make them dereferenceable. Do not define them in = someone else's=20 namespace.=20
    • Keep implementation cruft out of your URIs. Short, mnemonic = names are=20 better. Consider these two examples:=20
      • http://dbpedia.org/resource/Berlin=20 =
      • http://www4.wiwiss.fu-berlin.de:2020/demos/dbpedia/cgi-bin/resources.= php?id=3DBerlin=20
    • Try to keep your URIs stable and persistent. Changing your URIs = later=20 will break any already-established links, so it is advisable to = devote some=20 extra thought to them at an early stage.=20
    • The URIs you can choose are constrained by your technical = environment.=20 If your server is called demo.serverpool.wiwiss.example.org and = getting=20 another domain name is not an option, then your URIs will have to = begin with=20 http://demo.serverpool.wiwiss.example.org/. If you cannot run your = server on=20 port 80, then your URIs may have to begin with=20 http://demo.serverpool.example.org:2020/. If possible you should = clean up=20 those URIs by adding some URI = rewriting=20 rules to the configuration of your webserver.=20
    • We often end up with three URIs related to a single = non-information=20 resource:=20
      1. an identifier for the resource,=20
      2. an identifier for a related information resource suitable to = HTML=20 browsers (with a web page representation),=20
      3. an identifier for a related information resource suitable to = RDF=20 browsers (with an RDF/XML representation).
      Here are = several ideas=20 for choosing these related URIs:=20
      1. http://dbpedia.org/resource/Berlin=20
      2. http://dbpedia.org/page/Berlin=20
      3. http://dbpedia.org/data/Berlin
      Or:=20
      1. http://id.dbpedia.org/Berlin=20
      2. http://pages.dbpedia.org/Berlin=20
      3. http://data.dbpedia.org/Berlin
      Or:=20
      1. http://dbpedia.org/Berlin=20
      2. http://dbpedia.org/Berlin.html=20
      3. http://dbpedia.org/Berlin.rdf
    • You will often need to use some kind of primary key inside your = URIs, to=20 make sure that each one is unique. If you can, use a key that is = meaningful=20 inside your domain. For example, when dealing with books, making the = ISBN=20 number part of the URI is better than using the primary key of an = internal=20 database table. This also makes equivalence mining to derive=20 RDF links easier.

    Examples of cool URIs:

    • http://dbpedia.org/resource/B= oston=20
    • http= ://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X=20

    See also:

    4. Which vocabularies should I use to = represent=20 information?

    In order to make it as easy as possible for client applications to = process=20 your data, you should reuse terms from well-known vocabularies = wherever=20 possible. You should only define new terms yourself if you can not = find=20 required terms in existing vocabularies.

    4.1 Reusing existing terms

    A set of well-known vocabularies has evolved in the Semantic Web = community.=20 Please check whether your data can be represented using terms from = these=20 vocabularies before defining any new terms:

    A more extensive list=20 of well-known vocabularies is maintained by the W3C=20 SWEO Linking Open Data community project in the ESW Wiki. A = listing of the=20 100=20 most common RDF namespaces (August 2006) is provided by UMBC = eBiquity=20 Group.

    It is common practice to mix terms from different vocabularies. We=20 especially recommend the use of rdfs:label and = foaf:depiction = properties=20 whenever possible as these terms are well-supported by client=20 applications.

    If you need URI references for geographic places, research areas, = general=20 topics, artists, books or CDs, you should consider using URIs from = data=20 sources within the W3C=20 SWEO Linking Open Data community project, for instance Geonames, DBpedia, Musicbrainz,=20 dbtune or the RDF=20 Book Mashup. The two main benefits of using URIs from these data = sources=20 are:

    1. The URIs are dereferenceable, meaning that a description of the = concept=20 can be retrieved from the Web. For instance, using the DBpedia URI = http://dbpedia.org/page/Doom = to=20 identify the computer game Doom gives you an extensive description = of the=20 game including abstracts in 10 different languages and various=20 classifications.=20
    2. The URIs are already linked to URIs from other data sources. For = instance, you can navigate from the DBpedia URI http://dbpedia.org/resource/B= erlin=20 to data about Berlin provided by Geonames and EuroStat. = Therefore, by=20 using concept URIs form these datasets, you interlink your data with = a rich=20 and fast-growing network of other data sources.

    A more extensive list=20 of datasets with dereferenceable URIs is maintained by the Linking = Open=20 Data community project in the ESW Wiki.

    Good examples of how terms from different well-known vocabularies = are mixed=20 in one document and how existing concept URIs are reused are given by = the FOAF=20 profiles of Tim=20 Berners-Lee and Ivan=20 Herman.

    4.2 How to define terms?

    When you cannot find good existing vocabularies that cover all the = classes=20 and properties you need, then you have to define your own terms. = Defining new=20 terms is not hard. RDF classes and properties are resources = themselves,=20 identified by URIs, and published on the Web, so everything we said = about=20 publishing Linked Data applies to them as well.

    You can define vocabularies using the RDF Vocabulary Description = Language=20 1.0: RDF Schema or the Web=20 Ontology Language (OWL). For introductions to RDFS, see the section on = Vocabulary=20 Documentation in the SWAP Tutorial, and the very detailed RDF Schema = section of=20 the RDF Primer. OWL is introduced in the OWL Overview.

    Here we give some guidelines for those who are familiar with these=20 languages:

    1. Do not define new vocabularies from scratch, = but=20 complement existing vocabularies with additional terms (in your own=20 namespace) to represent your data as required.=20
    2. Provide for both humans and machines. At this = stage in=20 the development of the Web of Data, more people will be coming = across your=20 code than machines, even though the Web of Data is meant for = machines in the=20 first instance. Don't forget to add prose, e.g. rdfs:comments = for=20 each term invented. Always provide a label for each term using the = rdfs:label = property.=20
    3. Make term URIs dereferenceable. It is essential = that=20 term URIs are dereferenceable so that clients can look up the = definition of=20 a term. Therefore you should make term URIs dereferenceable = following the W3C Best Practice = Recipes for=20 Publishing RDF Vocabularies.=20
    4. Make use of other people's terms. Using other = people's=20 terms, or providing mappings to them, helps to promote the level of = data=20 interchange on the Web of Data, in the same way that hypertext links = built=20 the traditional document Web. Common properties for providing such = mappings=20 are rdfs:subClassOf or=20 rdfs:subProper= tyOf.=20
    5. State all important information explicitly. For = example, state all ranges and domains explicitly. Remember: humans = can often=20 do guesswork, but machines can't. Don't leave important information = out!=20
    6. Do not create over-constrained, brittle models; leave = some=20 flexibility for growth. For instance, if you use = full-featured OWL=20 to define your vocabulary, you might state things that lead to = unintended=20 consequences and inconsistencies when somebody else references your = term in=20 a different vocabulary definition. Therefore, unless you know = exactly what=20 you are doing, use RDF-Schema to define vocabularies.

    The following example contains a definition of a class and a = property=20 following the rules above. The example uses the Turtle syntax. = Namespace=20 declarations are omitted.

    # Definition of the class =
    "Lover"
    
    <http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LoveVocabulary#Lover&=
    gt;=20
    
        rdf:type rdfs:Class ;
    
        rdfs:label "Lover"@en ;
    
        rdfs:label "Liebender"@de ;
    
        rdfs:comment "A person who loves somebody."@en ;
    
        rdfs:comment "Eine Person die Jemanden liebt."@de ;
    
        rdfs:subClassOf foaf:Person .
    
    
    
    # Definition of the property "loves"
    
    <http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LoveVocabublary#loves=
    >=20
    
        rdf:type rdf:Property ;
    
        rdfs:label "loves"@en ;
    
        rdfs:label "liebt"@de ;
    
        rdfs:comment "Relation between a lover and a loved person."@en ;
    
        rdfs:comment "Beziehung zwischen einem Liebenden und einer geliebten =
    Person."@de ;
    
        rdfs:subPropertyOf foaf:knows ;
    
        rdfs:domain =
    <http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LoveVocabulary#Lover&=
    gt; ;
    
        rdfs:range foaf:Person .

    Note that the terms are defined in a namespace that is controlled = by Chris=20 Bizer and that they are related to the FOAF vocabulary using=20 rdfs:subPropertyOf and rdfs:subClassOf links.

    5. What should I return as RDF description for a=20 URI?

    So, assuming we have expressed all our data in RDF triples: What = triples=20 should go into the RDF representation that is returned (after a 303 = redirect)=20 in response to dereferencing a URI identifying a non-information = resource?

    1. The description: The representation should = include all=20 triples from your dataset that have the resource's URI as the = subject. This=20 is the immediate description of the resource.=20
    2. Backlinks: The representation should also = include all=20 triples from your dataset that have the resource's URI as the = object. This=20 is redundant, as these triples can already be retrieved from their = subject=20 URIs, but it allows browsers and crawlers to traverse links in = either=20 direction.=20
    3. Related descriptions: You may include any = additional=20 information about related resources that may be of interest in = typical usage=20 scenarios. For example, you may want to send information about the = author=20 along with information about a book, because many clients interested = in the=20 book may also be interested in the author. A moderate approach is=20 recommended, returning a megabyte of RDF will be considered = excessive in=20 most cases.=20
    4. Metadata: The = representation=20 should contain any metadata you want to attach to your published = data, such=20 as a URI identifying the author and licensing information. These = should be=20 recorded as RDF descriptions of the information resource = that=20 describes a non-information resource; that is, the subject of the = RDF=20 triples should be the URI of the information resource. Attaching=20 meta-information to that information resource, rather than attaching = it to=20 the described resource itself or to specific RDF statements about = the=20 resource (as with RDF reification) plays nicely together with using = Named Graphs and the SPARQL query = language in=20 Linked Data client applications. In order to enable information = consumers to=20 use your data under clear legal terms, each RDF document should = contain a=20 license under which the content can be used. Please refer to Creative Commons or Talis for standard = licenses).=20
    5. Syntax: There are various ways to serialize RDF = descriptions. Your data source should at least provide RDF = descriptions as=20 RDF/XML = which is the=20 only official syntax for RDF. As RDF/XML is not very human-readable, = your=20 data source could additionally provide Turtle = descriptions when=20 asked for MIME-type application/x-turtle. In situations = where=20 your think people might want to use your data together with XML = technologies=20 such as XSLT or XQuery, you might additionally also serve a TriX=20 serialization, as TriX works better with these technologies than = RDF/XML.=20

    In the following, we give two examples of RDF descriptions = following the=20 rules above. The first example covers the case of an authoritative=20 representation served by a URI owner. The second example covers the = case of=20 non-authoritative information served by somebody who is not the owner = of the=20 described URI.

    1. Authoritative Description

    The following example shows parts of the Turtle = representation of the=20 information resource http://dbpedia.org/data/Alec= _Empire.=20 The resource describes the German musician Alec Empire. Using Web Architecture = terminology, it is a=20 authoritative description as it is served after a 303 redirect by the = owner of=20 the URI http://dbpedia.org/resou= rce/Alec_Empire.=20 Namespace declarations are omitted:

    # Metadata and =
    Licensing Information
    
    <http://dbpedia.org/data/Alec_Empire>
    
        rdfs:label "RDF description of Alec Empire" ;
    
        rdf:type foaf:Document ;
    
        dc:publisher <http://dbpedia.org/resource/DBpedia> ;
    
        dc:date "2007-07-13"^^xsd:date ;
    
        dc:rights
    
            <http://en.wikipedia.org/wiki/WP:GFDL> .
    
    =20
    
    # The description
    
    <http://dbpedia.org/resource/Alec_Empire>=20
    
        foaf:name "Empire, Alec" ;
    
        rdf:type foaf:Person ;
    
        rdf:type <http://dbpedia.org/class/yago/musician> ;
    
        rdfs:comment
    
            "Alec Empire (born May 2, 1972) is a German musician who is =
    ..."@en ;
    
        rdfs:comment
    
            "Alec Empire (eigentlich Alexander Wilke) ist ein deutscher =
    Musiker. ..."@de ;
    
        dbpedia:genre <http://dbpedia.org/resource/Techno> ;
    
        dbpedia:associatedActs =
    <http://dbpedia.org/resource/Atari_Teenage_Riot> ;
    
        foaf:page <http://en.wikipedia.org/wiki/Alec_Empire> ;
    
        foaf:page <http://dbpedia.org/page/Alec_Empire> ;=20
    
        rdfs:isDefinedBy <http://dbpedia.org/data/Alec_Empire> ;
    
        owl:sameAs =
    <http://zitgist.com/music/artist/d71ba53b-23b0-4870-a429-cce6f345763b&=
    gt; .
    
    =20
    
    # Backlinks
    
    <http://dbpedia.org/resource/60_Second_Wipeout>
    
        dbpedia:producer <http://dbpedia.org/resource/Alec_Empire> .
    
    <http://dbpedia.org/resource/Limited_Editions_1990-1994>
    
        dbpedia:artist <http://dbpedia.org/resource/Alec_Empire> =
    .

    Note that the description contains an owl:sameAs Link stating that = http://dbpedia.org/resou= rce/Alec_Empire=20 and http://zitgist.com/music/artist/d71ba53b-23b0-4870-a429-cce6f345763b= =20 are URI aliases referring to the same non-information resource.

    In order to make it easier for Linked Data clients to understand = the=20 relation between http://dbpedia.org/resou= rce/Alec_Empire,=20 http://dbpedia.org/data/Alec= _Empire,=20 and http://dbpedia.org/page/Alec= _Empire,=20 the URIs can be interlinked using the rdfs:isDefinedBy= =20 and the foaf:page = property=20 as recommended in the C= ool=20 URI paper.

    2. Non-Authoritative Description

    The following example shows the Turtle = representation of the=20 information resource http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Link= edDataTutorial/ChrisAboutRichard=20 which is published by Chris to provide information about Richard. Note = that in=20 Turtle, the syntactic shortcut <> can be used to refer = to the=20 URI of the current document. Richard owns the URI http://richard.cygania= k.de/foaf.rdf#cygri=20 and is therefore the only person who can provide an authoritative = description=20 for this URI. Thus using Web = Architecture terminology, Chris is providing non-authoritative = information=20 about Richard.

    # Metadata and Licensing =
    Information
    
    <>
    
        rdf:type foaf:Document ;
    
        dc:author <http://www.bizer.de#chris> ;
    
        dc:date "2007-07-13"^^xsd:date ;
    
        cc:license <http://web.resource.org/cc/PublicDomain> .
    
    =20
    
    # The description
    
    <http://richard.cyganiak.de/foaf.rdf#cygri>=20
    
        foaf:name "Richard Cyganiak" ;
    
        foaf:topic_interest =
    <http://dbpedia.org/resource/Category:Databases> ;
    
        foaf:topic_interest <http://dbpedia.org/resource/MacBook_Pro> =
    ;
    
        rdfs:isDefinedBy <http://richard.cyganiak.de/foaf.rdf> ;
    
        rdf:seeAlso <> .
    
    =20
    
    # Backlinks
    
    <http://www.bizer.de#chris>
    
        foaf:knows <http://richard.cyganiak.de/foaf.rdf#cygri> .
    
    <http://www4.wiwiss.fu-berlin.de/is-group/resource/projects/Project3&g=
    t;
    
        doap:developer <http://richard.cyganiak.de/foaf.rdf#cygri> =
    .

    6. How to set RDF Links to other Data = Sources

    RDF links enable Linked Data browsers and crawlers to navigate = between data=20 sources and to discover additional data.

    The application domain will determine which RDF properties are used = as=20 predicates. For instance, commonly used linking properties in the = domain of=20 describing people are foaf:knows, foaf:based_near = and foaf:topic_intere= st=20 . Examples of combining these properties with property values from DBpedia, the DBLP bibliography and the RDF=20 Book Mashup are found in Tim = Berners-Lee's and Ivan Herman's FOAF=20 profiles.

    It is common practice to use the owl:sameAs = property for=20 stating that another data source also provides information about a = specific=20 non-information resource. An owl:sameAs link indicates that two URI = references=20 actually refer to the same thing. Therefore, owl:sameAs is used to map = between=20 different URI aliases (see Section=20 2.1). Examples of using owl:sameAs to indicate that two URIs talk = about=20 the same thing are again Tim's FOAF = profile which=20 states that http://www.w3.org/Pe= ople/Berners-Lee/card#i=20 identifies the same resource as http://www4.wiwiss.fu-berlin.de/bookmashup/persons/Tim+Berners-Lee= =20 and http= ://www4.wiwiss.fu-berlin.de/dblp/resource/person/100007.=20 Other usage examples are found in DBpedia and the Berlin=20 DBLP server.

    RDF links can be set manually, which is usually the case for FOAF = profiles,=20 or they can be generated by automated linking algorithms. This = approach is=20 usually taken to interlink large datasets.

    6.1 Setting RDF Links Manually

    Before you can set RDF links manually, you need to know something = about the=20 datasets you want to link to. In order to get an overview of different = datasets that can be used as linking targets please refer to the Linking=20 Open Data Dataset list. Once you have identified particular = datasets as=20 suitable linking targets, you can manually search in these for the URI = references you want to link to. If a data source doesn't provide a = search=20 interface, for instance a SPARQL endpoint or a HTML Web form, you can = use=20 Linked Data browsers like Tabulator or Disco to=20 explore the dataset and find the right URIs.

    You can also use services such as Uriqr or=20 Sindice to search for existing = URIs and=20 to choose the most popular one if you find several candidates. Uriqr = allows=20 you to find URIs for people you know, simply by searching for their = name.=20 Results are ranked according to how heavily a particular URI is = referenced in=20 RDF documents on the Web, but you will need to apply a little bit of = human=20 intelligence in picking the most appropriate URI to use. Sindice = indexes the=20 Semantic Web and can tell you which sources mention a certain URI. = Therefore=20 the service can help you to choose the most popular URI for a concept. =

    Remember that data sources might use HTTP-303 redirects to redirect = clients=20 from URIs identifying non-information resources to URIs identifying=20 information resources that describe the non-information resources. In = this=20 case, make sure that you link to the URI reference identifying the=20 non-information resource, and not the document about it.

    6.2 Auto-generating RDF Links

    The approach described above does not scale to large datasets, for = instance=20 interlinking 70,000 places in DBpedia=20 to their corresponding entries in Geonames. In such cases = it makes=20 sense to use an automated record linkage algorithm to generate RDF = links=20 between data sources.

    Record = Linkage is=20 a well-known problem in the databases community. The Linking Open Data = Project=20 collects material related to using record linkage algorithms in the = Linked=20 Data context on the Equivalence=20 Mining wiki page.

    There is still a lack of good, easy-to-use tools to auto-generate = RDF=20 links. Therefore it is common practice to implement dataset-specific = record=20 linkage algorithms to generate RDF links between data sources. In the=20 following we describe two classes of such algorithms:

    Pattern-based Algorithms

    In various domains, there are generally accepted naming schemata. = For=20 instance, in the publication domain there are ISBN numbers, in the = financial=20 domain there are ISIN=20 identifiers. If these identifiers are used as part of HTTP URIs = identifying=20 particular resources, it is possible to use simple pattern-based = algorithms to=20 generate RDF links between these resources.

    An example of a data source using ISBN numbers as part of its URIs = is the=20 RDF=20 Book Mashup, which for instance uses the URI http= ://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X=20 to identify the book 'Harry Potter and the Half-blood Prince'. Having = the ISBN=20 number in these URIs made it easy for DBpedia to generate owl:sameAs = links=20 between books within DBpedia and the Book Mashup. DBpedia uses the = following=20 pattern-based algorithm:

    1. Iterate over all books in DBpedia that have an ISBN number.=20
    2. Create a owl:sameAs link between the URI of a book in DBpedia = and the=20 corresponding Book Mashup URI using the following pattern for Book = Mashup=20 URIs: http://www4.wiwiss.fu-berlin.de/bookmashup/books/{ISBN = number}.=20

    Running this algorithm against all books in DBpedia resulted in 9000 RDF = links=20 which were merged with the DBpedia dataset. For instance, the = resulting link=20 for the Harry Potter book is:

    <http://dbpedia.org/resource/Harry_Potter_and_the_Half-Blood_Prince=
    >
    
        owl:sameAs <http=
    ://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X>

    More complex property-based Algorithms

    In cases where no common identifiers across datasets exist, it is = necessary=20 to employ more complex property-based linkage algorithms. We outline = two=20 algorithms below:

    1. Interlinking DBpedia and Geonames. Information = about=20 geographic places appear in the Geonames database as = well as in=20 DBpedia. In order to = identify places=20 that appear in both datasets, the Geonames team uses a=20 property-based heuristic that is based on article title together = with=20 semantic information like latitude and longitude, but also country,=20 administrative division, feature type, population and categories. = Running=20 this heuristic against both data sources resulted in 70500 = correspondences=20 which were merged as Geonames = owl:sameAs=20 links with the DBpedia dataset as well as with the Geonames = dataset.=20
    2. Interlinking Jamendo and MusicBrainz. Please = refer to=20 Yves=20 Raimond's blog post about his approach to interlinking Jamendo = and=20 MusicBrainz.

    7. Recipes for Serving Information as Linked = Data

    This chapter provides practical recipes for publishing different = types of=20 information as Linked Data on the Web. Information has to fulfill the=20 following minimal requirements to be considered "published as Linked = Data on=20 the Web":

    • Things must be identified with dereferenceable HTTP URIs.=20
    • If such a URI is dereferenced asking for the MIME-type=20 application/rdf+xml, a data source must return an = RDF/XML=20 description of the identified resource.=20
    • URIs that identify non-information resources must be set up in = one of=20 these ways: Either the data source must return an HTTP response = containing=20 an HTTP 303 redirect to an information resource describing = the=20 non-information resource, as discussed earlier in this document. Or = the URI=20 for the non-information resource must be formed by taking the URI of = the=20 related information resource and appending a fragment = identifier=20 (e.g. #foo), as discussed in Recipe=20 7.1.=20
    • Besides RDF links to resources within the same data source, RDF=20 descriptions should also contain RDF links to resources provided by = other=20 data sources, so that clients can navigate the Web of Data as a = whole by=20 following RDF links.

    Which of the following recipes fits your needs depends on various = factors,=20 such as:

    • How much data do you want to serve? If you only = want to=20 publish several hundred RDF triples, you might want to serve them as = a=20 static RDF file using Recipe=20 7.1. If your dataset is larger, you might want to load it into a = proper=20 RDF store and put the Pubby=20 Linked Data interface in front of it as described in Recipe=20 7.3.=20
    • How is your data currently stored? If your = information=20 is stored in a relational database, you can use D2R=20 Server as described in Recipe=20 7.2. If the information is available through an API, you might = implement=20 a wrapper around this API as described in Recipe=20 7.4. If your information is represented in some other format = such as=20 Microsoft Excel, CSV or BibTeX, you will have to convert it to RDF = first as=20 described in Recipe=20 7.3.=20
    • How often does your data change? If your data = changes=20 frequently, you might prefer approaches which generate RDF views on = your=20 data, such as D2R Server (Recipe=20 7.2), or wrappers (Recipe=20 7.4).

    After you have published your information as Linked Data, you = should ensure=20 that there are external RDF links pointing at URIs from your dataset, = so that=20 RDF browser and crawlers can find your data. There are two basic ways = of doing=20 this:

    1. Add several RDF links to your FOAF profile that point at URIs=20 identifying central resources within your dataset. Assuming that = somebody=20 else in the world knows you and references your FOAF profile, your = new=20 dataset is now reachable by following RDF links.=20
    2. Convince the owners of related data sources to auto-generate=20 RDF links to URIs from your dataset. Or to make it easier for = the owner=20 of the other dataset, create the RDF links yourself and send them to = her so=20 that she just has to merge them with her dataset. A project that is=20 extremely open to setting RDF links to other data sources is the DBpedia community project. = Just announce=20 your data source on the = DBpedia=20 mailing list or send a set of RDF links to the list.

    7.1 Serving Static RDF Files

    The simplest way to serve Linked Data is to produce static RDF = files, and=20 upload them to a web server. This approach is typically chosen in = situations=20 where

    • the RDF files are created manually, e.g. when publishing = personal FOAF files or RDF = vocabularies or=20
    • the RDF files are generated or exported by some piece of = software that=20 only outputs to files.

    There are several issues to consider:

    Configuring the server for correct MIME types=20

    Older web servers are sometimes not yet configured to return the = correct=20 MIME type when serving RDF/XML files. Linked Data browsers may not = recognize=20 RDF data served in this way because the server claims that it is not = RDF/XML=20 but plain text. To find out if your server needs fixing, use cURL tool and the steps outlined = in this=20 tutorial.

    How to fix this depends on the web server. In the case of Apache, = add=20 this line to the httpd.conf configuration file, or to an=20 .htaccess file in the web server's directory where the RDF = files=20 are placed:

    AddType application/rdf+xml .rdf

    This tells Apache to serve files with an .rdf extension = using=20 the correct MIME type for RDF/XML, application/rdf+xml. = Note this=20 means you have to name your files with the .rdf = extension.

    While you're at it, you can also add these lines to make your web = server=20 ready for other RDF syntaxes (N3 and Turtle):

    AddType =
    text/rdf+n3;charset=3Dutf-8 .n3
    
    AddType application/x-turtle .ttl
    File size=20

    On the document Web, it's considered bad form to publish huge = HTML pages,=20 because they load very slowly in browsers and consume unnecessary = bandwidth.=20 The same is true when publishing Linked Data: Your RDF files = shouldn't be=20 larger than, say, a few hundred kilobytes. If your files are larger = and=20 describe multiple resources, you should break them up into several = RDF=20 files, or use Pubby=20 as described in recipe 7.3 to serve them in chunks.

    When you serve multiple RDF files, make sure they are linked to = each=20 other through RDF triples that involve resources described in = different=20 files.

    Choosing URIs for non-information resources=20

    The static file approach doesn't support the 303 redirects = required for=20 the URIs of non-information resources. Fortunately there is another=20 standards-compliant method of naming non-information resources, = which works=20 very well with static RDF files, but has a downside we will discuss = later.=20 This method relies on hash URIs.

    When you serve a static RDF file at, say,=20 http://example.com/people.rdf, then you should name the=20 non-information resources described in the file by appending a = fragment=20 identifier to the file's URI. The identifier must be unique = within the=20 file. That way, you end up with URIs like this for your = non-information=20 resources:

    • http://example.com/people.rdf#alice=20
    • http://example.com/people.rdf#bob=20
    • http://example.com/people.rdf#charlie

    This works because HTTP clients dereference hash URIs by = stripping off=20 the part after the hash and dereferencing the resulting URI. A = Linked Data=20 browser will then look into the response (the RDF file in this = case), and=20 find triples that tell it more about the non-information resource, = achieving=20 an effect quite similar to the 303 redirect.

    The downside of this naming approach is that the URIs are not = very "cool"=20 according to the criteria set out in section=20 3. There's a reference to a specific representation format in = the=20 identifiers (the .rdf extension). And if you choose to = rename the=20 RDF file later on, or decide to split your data into several files, = then all=20 identifiers will change and existing links to them will break.

    That's why you should use this approach only if the overall = structure and=20 size of the dataset are unlikely to change much in the future, or as = a=20 quick-and-dirty solution for transient data where link stability = isn't so=20 important.

    Extending the recipe for 303 redirects and content negotiation=20

    This approach can be extended to use 303 redirects and even to = support=20 content negotiation, if you are willing to go through some extra = hoops.=20 Unfortunately this process is dependent on your web server and its=20 configuration. The W3C has published several recipes that show how = to do=20 this for the Apache web server: Best Practice Recipes = for=20 Publishing RDF Vocabularies. The document is officially targeted = at=20 publishers of RDF vocabularies, but the recipes work for other kinds = of RDF=20 data served from static files. Note that at the time of writing = there is=20 still an issue=20 with content negotiation in this document which might be solved = by=20 moving from Apache mod_rewrite to mod_negotiation.

    7.2 Serving Relational Databases

    If your data is stored in a relational database it is usually a = good idea=20 to leave it there and just publish a Linked Data view on your existing = database.

    A tool for serving Linked Data views on relational databases is D2R=20 Server. D2R server relies on a declarative mapping between the = schemata of=20 the database and the target RDF terms. Based on this mapping, D2R = Server=20 serves a Linked Data view on your database and provides a SPARQL = endpoint for=20 the database.

    3D"Architecture

    There are several D2R Servers online, for example Berlin DBLP = Bibliography=20 Server, Hannover DBLP = Bibliography=20 Server, http://www4.wiwiss.fu-= berlin.de/is-group/=20 or the EuroStat = Countries=20 and Regions Server.

    Publishing a relational database as Linked Data typically involves = the=20 following steps:

    1. Download and install the server software as described in the Quick=20 Start section of the D2R Server homepage.=20
    2. Have D2R Server auto-generate a D2RQ mapping from the schema of = your=20 database (see Quick=20 Start).=20
    3. Customize=20 the mapping by replacing auto-generated terms with terms from well-known=20 and publicly = accessible=20 RDF vocabularies.=20
    4. Add your new data source to the ESW Wiki datasets=20 list in the category Linked Data and SPARQL endpoint = list and=20 set several RDF links from your FOAF profile to the URIs of central=20 resources within your new data source so that crawlers can discover = your=20 data.

    Alternatively, you can also use:=20

    1. OpenLink=20 Virtuoso to publish your relational database as Linked Data.=20
      • Virtuoso=20 RDF Views =E2=80=93 Getting Started Guide on how to map your = relational=20 database to RDF and=20
      • Deploying=20 Linked Data on how to get URI dereferencing and content = negotiation=20 into place.
    2. Triplify, a small = plugin for=20 Web applications, which reveals the semantic structures encoded in=20 relational databases by making database content available as RDF, = JSON or=20 Linked Data.

    7.3 Serving other Types of = Information

    If your information is currently represented in formats such as = CSV,=20 Microsoft Excel, or BibTEX and you want to serve the information as = Linked=20 Data on the Web it is usually a good idea to do the following:

    • Convert your data into RDF using an RDFizing tool. There are two = locations where such tools are listed: ConverterToRdf = maintained=20 in the ESW Wiki, and RDFizers=20 maintained by the SIMILE team.=20
    • After conversion, store your data in a RDF repository. A list=20 of RDF repositories is maintained in the ESW Wiki.=20
    • Ideally the chosen RDF repository should come with a Linked Data = interface which takes care of making your data Web accessible. As = many RDF=20 repositories have not implemented Linked Data interfaces yet, you = can also=20 choose a repository that provides a SPARQL endpoint and put Pubby as a = Linked Data=20 interface in front of your SPARQL endpoint.

    The approach described above is taken by the DBpedia project, among others. = The project=20 uses PHP scripts to extract structured data from Wikipedia pages. This = data is=20 then converted to RDF and stored in a OpenLink = Virtuoso=20 repository which provides a SPARQL endpoint. In order to get a Linked = Data=20 view, Pubby is = put in=20 front of the SPARQL endpoint.

    If your dataset is sufficiently small = to fit=20 completely into the web server's main memory, then you can do without = the RDF=20 repository, and instead use Pubby's=20 conf:loadRDF option to load the RDF data from an RDF file = directly=20 into Pubby. This might be simpler, but unlike a real RDF repository, = Pubby=20 will keep everything in main memory and doesn't offer a SPARQL = endpoint.

    7.4 Implementing Wrappers around existing = Applications or=20 Web APIs

    Large numbers of Web applications have started to make their data = available=20 on the Web through Web APIs. Examples of data sources providing such = APIs=20 include eBay, = Amazon, = Yahoo, Google= and Google = Base. An more=20 comprehensive API list is found at Programmable Web. = Different APIs=20 provide diverse query and retrieval interfaces and return results = using a=20 number of different formats such as XML, JSON or ATOM. This leads to = three=20 general limitations of Web APIs:

    • their content can not be crawled by search engines=20
    • Web APIs can not be accessed using generic data browsers=20
    • Mashups are implemented against a fixed number of data sources = and can=20 not take advantage of new data sources that appear on the Web. =

    These limitations can be overcome by implementing Linked Data = wrappers=20 around APIs. In general, Linked Data wrappers do the following:

    1. They assign HTTP URIs to the non-information resources about = which the=20 API provides data.=20
    2. When one of these URIs is dereferenced asking for=20 application/rdf+xml, the wrapper rewrites the client's = request=20 into a request against the underlying API.=20
    3. The results of the API request are transformed to RDF and sent = back to=20 the client.

    Examples of Linked Data Wrappers include:

    The RDF Book Mashup=20

    The RDF=20 Book Mashup makes information about books, their authors, = reviews, and=20 online bookstores available as RDF on the Web. The RDF Book Mashup = assigns a=20 HTTP URI to each book that has an ISBN number. Whenever one of these = URIs is=20 dereferenced, the Book Mashup requests data about the book, its = author as=20 well as reviews and sales offers from the Amazon = API=20 and the Google Base=20 API. This data is then transformed into RDF and returned to the=20 client.

    3D"Architecture

    The RDF Book Mashup is implemented as a sma= ll=20 PHP script which can be used as a template for implementing = similar=20 wrappers around other Web APIs. More information about the Book = Mashup and=20 the relationship of Web APIs to Linked Data in general is available = in The=20 RDF Book Mashup: From Web APIs to a Web of Data (Slides).

    SIOC Exporters for WordPress, Drupal, phpBB=20
    The SIOC project has = developed=20 Linked Data wrappers for several popular blogging engines, content=20 management systems and discussion forums. See SIOC Exporters for an = up-to-date list of their wrappers. The project also provides a PHP = Export=20 API which enables developers to create further SIOC export tools = without=20 the need to get into technical details about how information is = represented=20 in RDF.=20
    Virtuoso Sponger=20
    Virtuoso=20 Sponger is a framework for developing Linked Data wrappers = (called=20 cartridges) around different types of data sources. Data sources can = range=20 from HTML pages containing structured data to Web APIs. See Injecting = Facebook=20 Data into the Semantic Data Web for a demo on how Sponger is = used to=20 generate a Linked Data view on Facebook.

    8. Testing and Debugging Linked Data

    After you have published information as Linked Data on the Web, you = should=20 test whether your information can be accessed correctly.

    An easy way of testing is to put several of your URIs into the Vapour Linked validation = service,=20 which generates a detailed report on how your URIs react to different = HTTP=20 requests.

    Beside of this, it is also important to see whether your = information=20 displays correctly in different Linked Data browsers and whether the = browsers=20 can follow RDF links within your data. Therefore, take several URIs = from your=20 dataset and enter them into the navigation bar of the following Linked = Data=20 browsers:

    • Tabulator. If = Tabulator=20 takes a long time before it displays your information, then this is = an=20 indicator that your RDF graphs are too big and should be split up. = Tabulator=20 also does some basic inferencing over Web data, without doing = consistency=20 checks. Therefore, if Tabulator behaves strangely, this might = indicate=20 issues with rdfs:subClassOf=20 and rdfs:subProper= tyOf=20 declarations in the RDFS and OWL schemas used in your data.=20
    • Marbles=20
    • OpenLink= RDF=20 Browser
    • Disco.=20 The Disco browser uses a 2 second time-out when retrieving data from = the=20 Web. Therefore, it might be an indicator that your server is too = slow, if=20 Disco does not display your data correctly.

    If you run into problems, you should do the following:

    1. Test with cURL whether dereferencing your URIs leads to correct = HTTP=20 responses. Richard Cyganiak has published a tutorial on Debugging=20 Semantic Web sites with cURL which leads you through the = process.=20
    2. Use the W3C's RDF = Validation=20 service to make sure that your service provides valid RDF/XML. =

    If you can not figure out yourself what is going wrong, ask on the = Linking= Open=20 Data mailing list for help.

    9. Discovering Linked Data on the Web

    The standard way of discovering Linked Data on the Web is by=20 following RDF Links within data the client already = knows. In=20 order to further ease discovery, information providers can decide to = support=20 additional discovery mechanisms:

    Ping the Semantic Web=20
    Ping the Semantic = Web is a=20 registry service for RDF documents on the Web, which is used by = several=20 other services and client applications. Therefore, you can improve = the=20 discoverability of your data by registering your URIs with Ping The = Semantic=20 Web.=20
    HTML Link Auto-Discovery=20

    It also makes sense in many cases to set links from existing = webpages to=20 RDF data, for instance from your personal home page to your FOAF = profile.=20 Such links can be set using the HTML <link> = element in=20 the <head> of your HTML page.

    <link =
    rel=3D"alternate" type=3D"application/rdf+xml" =
    href=3D"link_to_the_RDF_version" />

    HTML <link> elements are used by browser = extensions,=20 like Piggybank = and Semantic Radar, to = discover RDF=20 data on the Web.

    Semantic Web Crawling: a Sitemap Extension=20
    Semantic Web=20 Crawling: a Sitemap Extension. The sitemap extension allows Data = publishers can state where RDF is located and which alternative = means are=20 provided to access it (Linked Data, SPARQL endpoint, RDF dump). = Semantic Web=20 clients and Semantic Web crawlers can use this information to access = RDF=20 data in the most efficient way for the task they have to perform. =
    =20
    Dataset List on the ESW Wiki=20
    In order to make it easy not only for machines but also for = humans to=20 discover your data, you should add your dataset to the Dataset=20 List on the ESW Wiki. Please include some example URIs of = interesting=20 resources from your dataset, so that people have starting points for = browsing.

    10. Further Reading and Tools

    For more information about Linked Data please refer to:

    Overview Material and Theoretical Background

    Technical Documentation

    • Leo Sauermann et al.: Cool = URIs for=20 the Semantic Web (tutorial on URI dereferencing and = content-negotiation)=20
    • Alistair Miles et al.: Best Practice Recipes = for=20 Publishing RDF Vocabularies (W3C draft on serving RDF = vocabularies=20 according to the Linked Data principles)=20
    • Richard Cyganiak: Debugging=20 Semantic Web sites with cURL (tutorial on how to test Semantic = Web=20 sites)=20
    • Semantic = Web=20 Tools (listing of RDF stores and development tools)=20
    • Christian Bizer, Daniel Westphal: D= evelopers=20 Guide to Semantic Web Toolkits (another list of RDF development = tools)=20
    • Semantic Web=20 Crawling: a Sitemap Extension. The sitemap extension allows Data = publishers can state where RDF is located and which alternative = means are=20 provided to access it (Linked Data, SPARQL endpoint, RDF dump). =

    Projects and Practical Experience with Publishing Linked Data

    • Linking=20 Open Data Project (W3C SWEO community effort that publishes as = RDF and=20 interlinks open data sources such as Geonames, DBpedia, Musicbrainz, = ....=20 See also List=20 of public Linked Data sources on the Web)=20
    • Christian Bizer et al.: Interlinking=20 Open Data on the Web (poster)=20 (Overview about the W3C SWEO Linking Open Data project)=20
    • Christian Bizer et al.: The=20 RDF Book Mashup: From Web APIs to a Web of Data (Slides).=20 (SFSW2007 paper)=20
    • Marcus Cobden et al.: ECS URI=20 System (Documentation on how the ECS department of the = University of=20 Southampton implements Linked Data on their department website.=20
    • A similar=20 example is given be the website of the http://sites.wiwiss.fu-berlin.de/suhl/forschung/websys/opens= ource/index.html=20
    • Christian Bizer et al: DBpedia - Querying = Wikipedia=20 like a Database (Slides).=20 (WWW2007 Dev-Track presentation)

    Linked Data Clients

    • Tabulator RDF = Browser=20 (Linked Data browser implemented by Tim Berners-Lee et al.)=20
    • Tim Berners-Lee et al.: Tabulator:=20 Exploring and Analyzing Linked Data on the Semantic Web (Slides) = (SWUI2007=20 paper about the Tabulator Linked Data browser and its data retrieval = algorithms)=20
    • DISCO=20 Hyperdata Browser (a simple Linked Data browser provided by = Freie=20 Universit=C3=A4t Berlin)=20
    • OpenLink= Data=20 Web Browser (Linked Data browser provided by OpenLink)=20
    • Objectviewer=20 (Linked Data browser provided by SemanticWebCentral)=20
    • Semantic=20 Web Client Library (Java framework for building Linked Data = clients)=20
    • Semantic Web client for = SWI=20 Prolog (This is a small Prolog program allowing to see the = semantic-web=20 as a single graph, and to browse it, similar to the Semantic Web = Client=20 Library)=20
    • Tabulator= AJAR=20 RDF library for Javascript (retrieval engine underlying the = Tabulator=20 browser)=20
    • OpenLink Ajax = Toolkit=20 (includes both a Data Access Layer of RDF, SQL, and XML called Ajax = Database=20 Connectivity and a collection of RDF aware controls covering: Graph=20 Visualizers, TimeLines, Tag Clouds, Pivot Tables, and more)=20
    • See also List=20 of Linked Data Clients (maintained by the W3C Linking Open Data = project)=20

    Web of Data Search Engines

    • Falcons = developed=20 by IWS China, currently indexes 7 million RDF documents.=20
    • Sindice developed by = DERI Ireland,=20 currently indexes over=20 20 million RDF documents. See also their ISWC2007 paper Sindice.com: = Weaving the=20 Open Linked Data
    • Watson = developed=20 by KMi, UK. See also the=20 list of papers and presentations about Watson
    • Semantic Web Search Engine = (SWSE)=20 developed by DERI Ireland. See also their paper MultiCrawl= er: A=20 Pipelined Architecture for Crawling and Indexing Semantic Web = Data.=20
    • Swoogle developed by = ebiquity=20 group at UMBC USA, currently indexes 2.3 million RDF documents. See = also=20 their papers=20 about Swoogle .

    Appendix A: Example HTTP Session

    This is an example HTTP session where a Linked Data browser tries = to=20 dereference the URI http://dbpedia.org/resource/B= erlin,=20 a URI for the city of Berlin, published by the DBpedia project.

    To obtain a representation, the client connects to the = dbpedia.org=20 server and issues an HTTP GET request:

    GET /resource/Berlin =
    HTTP/1.1
    
    Host: dbpedia.org
    
    Accept: text/html;q=3D0.5, application/rdf+xml

    The client sends an Accept: header to indicate that it = would take=20 either HTML or RDF; the q=3D0.5 quality value for HTML shows = that it=20 prefers RDF. The server could answer:

    HTTP/1.1 303 See Other
    
    Location: http://dbpedia.org/data/Berlin
    
    Vary: Accept

    This is a 303 redirect, which tells the client that the requested = resource=20 is a non-information resource, and its associated description can be = found at=20 the URI given in the Location: response header. Note that if = the=20 Accept: header had indicated a preference for HTML, we would = have=20 been redirected to another URI. This is indicated by the = Vary:=20 header, which is required so that caches work correctly. Next the = client will=20 try to dereference the URI of the associated description.

    GET =
    /data/Berlin HTTP/1.1
    
    Host: dbpedia.org
    
    Accept: text/html;q=3D0.5, application/rdf+xml

    The server could answer:

    HTTP/1.1 200 OK
    
    Content-Type: application/rdf+xml;charset=3Dutf-8
    
    
    
    <?xml version=3D"1.0"?>
    
    <rdf:RDF
    
        xmlns:units=3D"http://dbpedia.org/units/"
    
        xmlns:foaf=3D"http://xmlns.com/foaf/0.1/"
    
        xmlns:geonames=3D"http://www.geonames.org/ontology#"
    
        xmlns:rdfs=3D"http://www.w3.org/2000/01/rdf-schema#"
    
    ...

    The 200 status code tells the client that the response contains the = representation of an information resource. The Content-Type: = header=20 tells us that the representation is in RDF/XML format. The rest of the = message=20 contains the representation. Only the beginning is shown.

    Appendix B: How to get yourself into the Web of = Data

    A great way to get started with publishing Linked Data on the Web = is to=20 serve a static RDF file; this can work well for small amounts of = relatively=20 simple data. One common example of this practice is providing a Friend-of-a-Friend (FOAF) = file=20 alongside (and interlinked with) your HTML home page. This Appendix = provides=20 step-by-step instructions on how to create and publish a FOAF = description of=20 yourself, and how to link it into the Web of Data.

    FOAF-a-Matic is a = web form=20 that will generate a basic FOAF description for you in RDF/XML (which = we will=20 call your "FOAF file" from now onwards). This provides an excellent = foundation=20 to which you can add additional data. After generating your FOAF = profile using=20 FOAF-a-Matic, you'll need to save the generated RDF/XML code as a = static file=20 (using the filename foaf.rdf is a common convention) and = decide where=20 it will be hosted. Technically your FOAF file can be hosted anywhere = on the=20 Web, although it's common practice to use your own Web space and place = it in=20 the same directory as your home page. For example, Richard Cyganiak's = FOAF=20 file is located at http://richard.cyganiak.de/f= oaf.rdf;=20 this is the URI of the RDF document, the document describes Richard, = who is=20 identified by the URI = http://richard.cyganiak.de/foaf.rdf#cygri.

    By default FOAF-a-Matic will use a fragment identifier (such as=20 #me) to refer to you within your FOAF file. This fragment = identifier=20 is appended to the URI of your FOAF file to form your URI, of = the=20 form http://yourdomain.com/foaf.rdf#me. Congratulations, you = now have=20 a URI which can be used to identify you in other RDF statements on the = Web of=20 Data. Your URI is an example of a "hash URI", discussed in more detail = in Section=20 7.1.

    At this stage you will want to start linking your FOAF file into = the Web.=20 One good place to start is by linking to your FOAF file from your = homepage,=20 using the HTML LINK Auto-Discovery technique from Section=20 9, but don't stop there. To firmly embed your FOAF file into the = Web of=20 Data you need to read on and implement the guidance in the following=20 sections.

    Change Blank Nodes to URI references

    At present FOAF-a-Matic uses "blank nodes" to identify people you = know, not=20 URI references, as the system has no way of knowing the appropriate = URIs to=20 associate with each person. Example output with blank nodes is shown=20 below:

    ...
    
    <foaf:knows>
    
      <foaf:Person>
    
        =
    <foaf:mbox_sha1sum>362ce75324396f0aa2d3e5f1246f40bf3bb44401</foa=
    f:mbox_sha1sum>
    
        <foaf:name>Dan Brickley</foaf:name>
    
        <rdfs:seeAlso rdf:resource=3D"http://danbri.org/foaf.rdf"/>=20
    
      </foaf:Person>
    
    </foaf:knows>
    
    ...

    This is valid RDF but isn't good Linked Data, as blank nodes make = it much=20 harder to link and merge data across different sources (see Section=20 2.2 for more discussion of the issues with blank nodes). = Therefore, the=20 first thing to do in making your FOAF file into Linked Data is to look = at the=20 blank nodes representing people you know, and to replace them with = URIs where=20 possible.

    Link to your friends

    Section=20 6.1 explains how to set RDF links manually, and describes two = services=20 (Uriqr and Sindice) that you can use to try to find = existing=20 URIs for people you know. Following this approach we can find out that = the=20 existing URI http://danbri.org/foaf.rdf#dan= bri=20 identifies Dan Brickley, and replace the blank node generated by = FOAF-a-Matic=20 with this URI reference. The result would look like this:

    ...
    
    <foaf:knows>
    
      <foaf:Person =
    rdf:about=3D"http://danbri.org/foaf.rdf#danbri">
    
        =
    <foaf:mbox_sha1sum>362ce75324396f0aa2d3e5f1246f40bf3bb44401</foa=
    f:mbox_sha1sum>
    
        <foaf:name>Dan Brickley</foaf:name>
    
        <rdfs:seeAlso rdf:resource=3D"http://danbri.org/foaf.rdf"/>=20
    
      </foaf:Person>
    
    </foaf:knows>
    
    ...

    After setting links to people you know, there are many other ways = in which=20 you can link your FOAF file into the Web of Data. Here we will discuss = two of=20 these.

    Tell people where you live

    A common thing to include in your FOAF file is information about = where you=20 are based, using the foaf:based_near property. This isn't = supported=20 by FOAF-a-Matic, so you'll need to add the code in manually. Add the = following=20 line somewhere inside the <foaf:Person=20 rdf:ID=3D"me"></foaf:Person> element, replacing the = object of the=20 triple with the URI reference of the place nearest to where you are = based.

    <foaf:based_near =
    rdf:resource=3D"http://dbpedia.org/resource/Milton_Keynes"/>

    Using URIs from DBpedia or Geonames ensures that you are = linking your=20 FOAF file to well-established URIs which are also likely to be used by = others,=20 therefore making the Web more interconnected.

    How to link to your publications

    If you have ever written a book or published an academic paper in = the field=20 of Computer Science, a URI may already have been created for you in = the RDF version of DBLP = or in the=20 RDF = Book=20 Mashup. At a general level, how to handle this issue is touched = upon under=20 URI Aliases in Section=20 2.1. In summary, you simply need to link to them with a statement = saying=20 that they identify the same thing as the URI identifying you in your = FOAF=20 file. Section=20 6 describes how this should be done using the owl:sameAs=20 property.

    Appendix C: Changes

    • 2008-07-17: Added link to Vapour Linked Data validation service. =
    • 2008-02-18: Fixed typos pointed out by Gus Gollings. Added new=20 references to the "Further Reading and Tools" section.=20
    • 2007-08-29: Added white papers on Virtuoso to section 7.2.=20
    • 2007-07-27: Replaced the term 'data item' with 'associated = description'=20 after feeback from Frank=20 Manola and extended discussions on the Semantic=20 Web mailing list. Added reference to Virtuoso Sponger and to = Michael K.=20 Bergman blog post about data on the Web.=20
    • 2007-07-18: Added new section 7.1 from Richard. Added Apendix B = from=20 Tom.=20
    • 2007-07-17: Updated the document with feedback from Franois-Paul = Servant=20 and Leo Sauermann.=20
    • 2007-07-14: Moved FOAF example into Appendix B. Updated images = in=20 section two.=20
    • 2007-07-13: Updated the document with feedback from Ivan Herman, = Joshua=20 Shinavier, Giovanni Tummarello, Yves Raimond.=20
    • 2007-07-12: Small edits across the document by Chris. Sindice = added.=20
    • 2007-07-11: Initial version of this document.=20
    ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/png Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/deref-ont-uri-rdf.png iVBORw0KGgoAAAANSUhEUgAAAtMAAAEDCAMAAADA/HixAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAwBQTFRF AAAAAAAEBAgICAgYEBAMEBAQFBAQDAw8DBQUDBQgGBgUHBgUHBwcIBwcAAT6ICAYICAgJCAcJCQk ICgkKCQkLCgoMCwoMDAwMDQwNDQsNDQ0ODg0ODg4ODw4PDw0PDw8HDyZQDw4ICzuQEBAQEBIRERA PEhhTExMVUxIEHU8UFBQVVVMPETySGFVWVlVDHWVYWFhYWVdZWVlbW1lWV32bW1tRHW6RHW+cXFp bXF1ALJIQIlxjW04cXFxeXFhdXFxPIWydXV1DL5IfX11fX19gYF1WYm+hYWFZY3GJMJhjYl9fZV9 iY2VjY2NcY3ejY2RkZGNJNZIhYX/dZnOeZnGlZWVoZV1mZmZoZ2JXcKFkZH/nZ2dearSkaG+oaGZ lZX/oaGhpaGZmZn/jarWuqV1uqV57p0cnZ3/qqqlvqp5vqp9oaH/rq6lvq59lbLarq6u7qUswq6B wq6FpaX/wq6JsrKlwrKFsrKyobbSqqr/wrKRsraytra2xraNvralobrerq7/xraRxraVyraRurqy wrqhsrL/yrqRyrqVqr7iwr6lyr6Vtrb/vr6+zr6Zzr6durr/zsKdysKqwsLC8r5Zvsa+0sKhxsa6 xsbG0sal1saqwsL/ysrG1sqqzsrC1squus7mzsrG1sqyus7q2sqyzs7O0s7G2s6y1s6+vtLq2s62 ztLGysr/ytLe0tLK2tK23tK6zs7/3tK+1tbG3ta61tbS3ta+3tbC4ta+ytru2trS4trC2tra4trG 4trK2t7S5trK1tr20t7u3t7S9t6V3t7e5t7K5t7O3uLW5uLC4uLO6uLK4uLi6uLS6uLW5ubW5uba 6ubS6ubW6uba5ubm4ub65ura7uba7urG5ure6ura6ure6uri/+qu7ura7ure7uri6u7e8uri6u7q 7u7i7u7q6u728u7i7u7u8u7m7vLi7vLm7u7/8vLu7vL69vLm8vLy9vLq9vLu//bG9vbq9vbu//rG 9vby9vb2+vby+vry+vr2+vr6//r2///6////a3BJGQAAL4ZJREFUeF7tnQ9gFNed3/d0pRCCAY0i y2B6I9AJwoioU4FrF8FZixGDdAc24cYRUZSsL4nL5VwT5yzUa2VoLrlLuN7YMVALJxj70k6cOFVC qoIbe+wUY7DK2cF21pDSs4l6qiObhi5pwRCJnf5+773ZvzP7d2Z3Nft+lvDuzrw3b37z2Z++8+b3 3guYxdqm9T6wE8V6gZevHA8Eim2KNt8HSMtSsW7g5SvHA8Uz3VQ5J1NwSyZmFFyUF6w4D3CmySVp 0CvuyvAGFeoBzjTx3NpNhTqQl6s4D3CmySXZwQV1xaFZcIM408R1XFAXTFDlFeRM02vCBXXlsVlo izjT1HNcUBdKUOWV40zTa8IFdeWxWWiLvGA6rIcLbU7ZynFBXTbXu35g95nWRQH+g/5eXSCmsP8L pAtYEoSM50D3skx33FlSSG3wLz1KEI9nKllqz3BoLqhdZ6tcFbrOdFhA2lSAMQHI+EuRsOhsuTJN 68F/SQlN0MjxnL8E2RzMBXU2D1Xe9rDcMGjTKteZlmVyFDnsyLSmwvYBzQwrEr4yQ3LQMPFdUANC taAM/yP7KKQKtkEdCKoh2GKqEYvmBKaR7uKY7qXt5jZtPDDRfkP3ruamA2kNdp1pCJjMnOK0gYJC MAxQJbJomkFRU4WwCe8U/J8QCgkDpgIbTIFgyjaIQjCowqdhKkdcj9Mn5k+bi8kbCh64uumGzpGT J0/2L5RSkyrdZxqkgKYoCmiBAFG6KA2StYcYMjXRJAEdvgEAsqlqEQzMoMKFELwTE5i2Nohk97Cp 0niawDQ5ChQrLk6b83m+6TT6svQJbd8FotF6bmhL7pPwimlQ1Y56WpVMWTWBbETT2ktTRBH4x68A 3uzF4zTbQCCWg6ZI/w4kMB3SNRFuEYtlWu6dRpe0ypuqNbQMnYpb9w3rJxI84jrTUiyOOt8jCmEI uCKJzJTpCNzkqTqJ06lMWxsIxJpgVSohxbF7xLAAlRUZp7mgni5fFL1Z3Ptakr3YfsOmq7Hmu860 FsD4i70fzkxLEqQMBeE3IhgoP0xJxcAcxjgN6IIqCcHbAaKnrQ00MAuUZexYgVtFHcsScYOKvEim uaCeHkyfaK2/L5lofDfSVtdntd91ps2QIICKgGitB0Q0jNspfXmUe1FScGNICMKtoga3gCJEW0GQ ZeAzLEiySJi2NlCmg6i+iUnsKJRpqKxYprmgng5MT6z9SM+btjbUYnXsuc80EKxohDydGPTTwUvL XxRN+lZTybawihIZ/w1HYIuGvAPqcJNJdmQbDNKFNyDGHG+ooYSqI3Tnwvun4c8DF9RlpvrdY1ka cFWZ133KHmn4dG9zEwHLC6YzNSzbM5fMJ6WTG8sMVgzTXFCXGWlzd0dfRqp7590+8k4mG5yD4THG tJ7bUFklLsWpB7T8xiPKIBIKNgMlTSYLoVAv1IYb73+30LK8nBse2L17eKMz1YMNrSPnM9kl83wL /q21mNbFtTnZ7NgjFXYSeTLtxql7U8fFDUv/5YYpb+rOWutLzHBHr1/vZobH8vr1VmZ4rOyvd+82 zeGO+229pTc1D2Uk+r3ohcc+/9EEpnXRCOdiep1vmd69u7Vv80aHa3ArM3S3F6+zX+9cmMhtH685 Tqw/v+8nMP3S1q128gM6O/p/mcneu37tmQe+kMh0zkh/wr9M/3jr7w5u/PcO8TJroOU7uOCB3X1b t75kU8/E2rpPZyT6wuS1F76yM4np3JGuRKZJ70fcaEdLAXZ/44Y9BRTjRVzzwFO2RJub5nf/3XuZ bPLaTx/52kNJTOeBdC5MhzD5IrOx/jrnnRTJhJ8Ug8ctNG06meH4faMCW0XB+TYxc6+I9rsXs7Wb by+DB07MfutSJrt2+fw3H/l6MtP5IJ0L02L2mbqy9ujB08NIarxFImkvdZIF498gZBqfL5ok8Snd MjO9fn0ZLhg/ZFYPnJj3m6gz09fMS4cffyyF6VcDudnCT6Bl19OQy0Ef9tG8aFMlsRXSogeANUWT g2F4NihpkItHzyYUxDRqtsVUdJI/DUxjCjVLsVZlGcANwnNzLARVwTtNHZAVPI4YjigDcCRVVhUl AjvhQ3MRNhh4XMWIQEprMGzgcTMz3ZR6+5vV23yHUnjgxLzxD6KX7e2aee3Fp59IY3pfYF8utn12 jkwHZZpGyvKiRRmzpAeEkIZp+wFRgyxpwjSk5qEpoqbBI3K2JSF/GrCGrBEdUu4kWUc9g0xDHfAS 8/AUQR7A9OuwiGWDhow1JzFtQm4IJJXoAQl2hF/69NzRrs5I7XovxQXjx8jqAWB6/LI5ec3GzMk3 Dz9TAqYhr0gjWf8kL5q8VCL4/A+y+XX8UCZoWobPx+GJt7UFtTgkMAHQ8ANfDwjVMN4FviE0JwoK 4h5QlUKOgWGelA2j5oC/CLgTjHmE1G0FPgvCp7iV/mZm2jcd7VkhmWY7INNjF6aiaUybk//zhWed me7NYvv25RqnNQEGBAB3LCaSRGiAD7OZAjr5ED5K1NMqJCsh03RLPNc0vhsoEJHl+SHTKDgEnWVY m7IeT14CPU1Etx4SdR0YVwOgd6x0vWxMczldoawTpsfGLpvXJxMtGr302snMTIcyWu5MSxIwLTFI IzS5HxJKQ5jOxMiVEpmWZM0gcRqZlmyYhsJBPZwQp1Gkx5lmA2tpeSvBlehpCNj4ID5Xprmcrlym Rw6NjZ0bnzSjMaij16+df+2VIphGvZ1jnA5DRjRqAysv2oC//pAljfeJMF5LD8B9GOiQhDiNgRl0 sbUF86dBclDtAQNirGEA8TiNZUHRsDhtMGpJGjYbaAtfItK/p4oRGHiQI9NcTlco0ibE6QWB28bO nTkz9gHkLlwHi5rXzp89m5Xpixf/91tgx4796Ec/+o/f+tY3vvHXf/lv/uxP/+Sf/9FnPtmXB9M4 DBYjJKT1k7xo4BWzpCH7KIiCJCAEIYbD7Z5sdTVLIiqL2BaWP02ZxhRrKCXIMK4L2BVEg1BLqmJM K2yACx4OqkqUzAZR9kaOTHM5XcFM750RqB06c+b06TMXPsBmTv4CE06zMo1AOzC9PQ+mDZqzj+nM NC8autRIRzNJltaFCJnPwISHfVZXM25AVUK3CDp5HgOd06R/WlOxvlAoDPrFDOu0EL6lm3UzhB+Q rNmwakSwGy92acgeUIAM8qW/8Y1pF5DL6Qpmevz1tkDgNmB6dPTUqTHzEhvnkk17ZGB6Rx5MZ3aM c2eatSV5zpoSupnL6RI6O69D4T3iyNgu3dzeeQiZPjX1y0piGtWvvVlbpEKzNfJyU/rO01ROK03+ s9T0B2B6ROh+P/r/JpXAzd3I9C9eYZblHvGYZel6esC1OF0keB4Wn6ZyWlqv+c365qdcZmD6V/+6 fvFzk2akJhCo6Tw1dZ7N7HGycKYHq4DpaSqnN6318HtenqrTxu8j0/+rvX5WO+jpnsWBGaNT51+0 LHP/NITnmKX0e1QD09NUTusN5QHPw6PaMX1h6vXtN9fXdo+Mjo4cGp1654WYZXyOWN1MT1M5bZoz Eicg8pC00lVtx/T42OVf7WqtFWpato+Ojk6dfTZumZ6NfyvZEvuntbj2UGenTpc+TYVoyjWatmch 7SgdbaU5kj3TY+OTP+j5J/V1tbPvOT31s+KZJml79DniLWmjxKctDUlXaJrKadP0n6B2YHrs3IXo 8V09LbU3np5682jcMsXpb6Ra/DnigTjTi2ITOFlI+IPpaSqn4SlSWQQ15O7iAzJDIrNswbNi8hYN Vmogk+rb2YAIT4nx7zw8CGPT09rs5sj0GUjOizzXs/D01E8PJ5hjrmlv71+nWezZeJzpO9NzjH3B 9LSV0+UR1JIcHsD0SEENY6q89RaRFjU2y2w6rZjRYAQxHwgerLF8zbyYhn6Pscva75yeeu2HCZaB 6b9MNyvf42AsTrctS2uE1uCDDlI1v4l3SiMscztKOQS1BDxDbg3J7QG22VtsL519Fp+shWkSBEwV x+7AcIZPMBylQdJ1wiGa0kD2MyKa9bDNOU4D05DxcQiYfibRnMYE9Pb+mZ3RHCY9xrTcmubocLMf nmSlSarcgKqAvcokqHWItzC4g00rC5hSJGG0EfUJyWCDLB1MOIMkdjAWmWFgnxwQDUUQg5iXxvaD FHrrEXMGps9Qi556Oskcxm719v6prRGmhzMxXQGXtaqbUB5BTSauJUEZV1iDwfrW4H0ZZrXFQXmY +gvp8CTHmI6Ys9QGnThfgRxkXMaE7Zcw45wT06NtPRbTrzyZZI5M/4m9caYr/RtTnh7qCAwJjTNt 4ltmMAIJh3jAyJCgAMM5cNQTieEpTIsIfmy/hIR6J6ZbPlbHoI6ezJHpP3Kyz3zyCI/TFQx2OQQ1 uAOiL4w9srQHC8YR0uUREWCQHrAMw44I0ziSH1UGcSJGbesekTEN++XA9M0b229m2uPkE8lmP268 t/czjvZJgzNdwUyXXlCTuS4g7OJiDqAfrLfoI1yDBJgOk88G6KI9YRbCyTYTe//iTMf2i/f/OcXp ++rqVjKm/+vjKZY6vweZC6G395POxpmuYKTL0UMNd4Iq3vmJMlkdynqLwTggK2T1B5gJA+evIHNg MK0NA5RgG9EcMiw8RbSHtV8OcfpcT6elp1/IkelQX9/27Tt2DAyCwcPwAwcOHtT14eEjhnHiBI/T lQx1GQS1StZnNSNBiUyCxd7iS0MR6cRYIRknKYIJhujCrsRUCWcbwrUGNbaoq7WfNYERbHTs9zhn WfSFx2K26+413T2P2cfprNPWkGfjNn15lXy1q6NtZRLUXjk3B6aff5RZd01N3fK6Wb+1Jja3WDc0 K2DmMw/TQr7kiVeXsvB6Sy+oC29rDiWdmIYpPphFn32E2L9qrtvW1bVly7quxvoeNgdk96lcmd62 ZRvG6dY569PWvsihlXwXTz1Qnh5qz07Jjumh+v440mPRow+j/fnM5V2f2vbxDVvWdaxYMvNuOldv 9+F3SJy+M6v9fnvn+hmQlXfLWrIIDLeK8kAZBLWH528bp4duWjkaj9NHv47WvHzLlk91bdu8patr xZLl8x7c+UD/783ZdfgoMK0FGsCEGvhnzgx8aW91NZhreqCeM+3h9Sysan8Jats43fqTO+KhOvqf vgbWXbdlS9fmbdtWrVoFcXrd8padnULbXkjYu4xxWgZrng3/wCNOR2udBUgPfoIzXRh3Xpbyl6C2 jdPdtT1DN7UyARI9/BWwBRtASoOtWrViRWP7utW/Vd/6VyQF9XzAfLVm6dpbli5buGxZs7iwmdgy MFg/uZXa0qVLZfhARqQ5017CWWDdcUHN5j+2ryeiQcKz0yEgE9qgyw7Dg2zVegEzDqJlmp+CJigl GpuMyHFWCyiR1k41nvBhG6fvGFm2eKT7pto7RkCBRA8/BFbTtw2R7kKmO9atXj2rmyVV/yIwsWj9 DrTQpnaymBwuk9jZ2QlPNLu7uzdtuvPO2BJz6wcgUvM4XSB4XhaLCeqM6y9APhF9dm1nQggmYcN5 OnE+OAWmhdVkzA1lc3c6N94mD5pNO+Q0+xDOTpTQHU2rjrAn5/DSjunXVy4Y2l7beXxo5azFu8ai PwSk754Jd4cM6SUQplcvv40xfSHQjEI6wRam2iLLajZxpr0ks/C6Y4I6xrTOlr1mM7kpgCekGdF5 1gyVzrSmk8xmNt0aEMimwool7CPdSWDSgiwjGhbRxlurIAZxKwfawNWyMTsaDYtaSdS0OWEyv1wI NpBQTjOrWT3xGbrs+/L66+843jYL1Mf2/rHoMw8++ODdM0FHd62DPo8VSxoB6dXLWxjTlwPiHFlu ZUwvbUuyWyyjoXq2wpkunDsvS8YEtcU0zJ2JT6TpNJxhnENTMlVBUJEcmJQTp+GEhGUZEz3jUZVi pUGmBg2++D6RaTqbJ5uCUxdg2R4B8qMhy9TKgRZFXMoBs6MZ07gBk/LoVJ4DQpAs9RAgczUn15Mw d2ca0xPzfzA+Pg6heu/rd/2jOXccH48+s3Pnzp4auDlctap9xRKwLmC6jmmP18zAwsCiRTPYii5z YjHZ5kVdDWfaSzCLqDsmqBnTMJYEJ0gmycnyAKykQFKV6ayvGllQQTVx1CBJ6qeGcTqA2hmjrDUR PmQ6E2VN9iCzLkthNlUymVuZhfSEHGhMa4p/S9gGMuWyBC0hS0Cw5R5S6skQp80TDYMA9Xh//YK7 Xv/+yrvGo09/Cax2BSC9YkX7uvYlc+cuaVxd8xckTh+9bgZE6L+bM0OugZ9ZtzQsWruwKYg/zbfE fhYta8OfRTOA6bb0gS5FXAte1CUPWIKaMU2y8kXF4iSsKRBSGdNkiT62IAOuU5bANOSHktCdyDTO hU9vES3Q6ZT2pG4YDwCfWrnSeHCczD7GNNkH/rH+ehghmlpNlzBJricT0+ZE0z0I9fhXW2tavzo+ Hv0PD4B9tHEFWMe6dV3A9Nwly2cTpP/zBXiOKDZAwpI2CD8H9w3q+KMN79MgZfrIgX2QkHdi34ET +w6+uk8Ph+coHGmXGHS7GktQW0yjoo0xPQDag4EE/1Mw6jowjVswjFN8Waaz1VaLabr0SCrTLAc6 E9NBIaiyFSHiS5hY9WRk2rwqtY0Sqs/ctaBzPPrkF8A+/2FAegncHnYA0nPnzupBpE9OQuuQ6W3b DkAeHiTiHdQPHNQPHhw+qA/rw0fgB9Ly4Af+e/WEAUzzKO02jC7VZwlqxjRZ9wwiLlkRSmV/5Vmc Jh0McpBE09Q4ja1BpUHxZZnOVhPJECzRYEtEJTCdmAOdxDTZAGqDLDUFY17giMF4nMbMarZsFMT7 zExDT0ldD4EaLfrkH6P93kyU0u3tBOnGNRikz5PGItP/bvDAgb339fYD1IO6tm8Yfw4c0Q4Ygwfh 58TgsDH46pHB8JxWLjxcYtDtaixBDTdjOLrEgDX4sNeCLucni7BmE+Ali+QeERb3g+X8YkyzbuRY v4cG6zrBonygQhDsxHtEuiogW8rPYjoEupzlSse0By5wSYpCYnUI8qzZkoDkwDiEIBiBXVPqyca0 GZYX3vc+tegTQHRPS33LTIB5NSqPuTOx0+MNDNKE6aS+vKaFC8nPooQfsWlR06JFzYtq0idCcPva 8PoK9AAT1LDqKTINQ0to1nJIgpVOcdXVsApDWhWV9E/jW1zfD9QFDoQlA6uQQNZ5raqQ3wxGwGRb aatUUqlGFmClNUFZFV7QXGnsdMYFhCE72ioKx8fX0Bwy3kUiDQgpEbJ0a1I9WZk2zQPNdXeNEqa/ +bm71wjQzdF/48zGpXMbG5fO6zl89J3rlu8C+8iTolzMeR3vAi8EL+aaB4pO+Sjb+gzMBTkwbZpH 2uYvvWvo/eje2+Z0fpvcEna3LahZ0NL53Tfh1jBmAdfcyisqoweKTvmA7uYyNh9Ud2yJ4bT+6cR2 TfS2NdQ0zb/tu7FZ1U+efedSNLnpnOlyXkrXju2jHOqMTKPDrmqpc+umuJEz7RpX5azorcY//HE5 j+/isbMynfVYnOmsLpoGO0xtaOzbeGwaNDSHJrrFtAbLzuNUDPDUdICsHmtjGRIOf3w/rC9q3soM y/LXt95aSj9s3rR2z/05ADMNdnGJ6WBAUkNyAPICjAD0KtoyTZ632trFzRv3INPcyuaBixv+2Z2b h8t2eFcP7A7TaoDwij3x8TTWlHbqAac4fbFjj6vnxCsrwAPfa+zwSZhOz5/O2x2op61JKUF3kIxw 6EkPw0Sq2FuuqZEgTrUDGeJJ3e8Jx/msX5yZt+8qqMDEjIsV1JqimuJKnFYTQjAmyMJbXZBCQXhI akqSGFSEIMRvJ6bf7eC6o6hr6ErhHf55IGbLtK5k68BLcCPEacxDtAxncCc5AfAB5JuYAqZp4Rxn 8blYU67BU9N3OnJXaKqMStZuqox2uNAKG6YhooLFZgPOdhBgmkzLRw1jNAyCgMQTSJsFbR0m43Aw fZwNyLGp7t1sh+DbvfdAAxuC5f2RPD9COtMG9l6YaoCOCctuCUwbYRjfQwgOBsgXAwdFYA2Qteh8 i5j9EHwPzz0wMcPzQ5TsAOlMo3IAo0PLdevbG07stIh9iuMrE7SHAMNrREJwLHKT2nQcoZagT0p2 dvxAuXrAR3Lapt9Do/1y+EQcVQiutqEJMLySZIujlLA+BTUhQGc0MB2iRXA0JGiWGME4/pd8NZBn HJXJrWI94CM5bdeXJwfonMDmAKJKMsMFyTDIXR+8i32qBcQBiN7YlycHZC0koWJmt4gw0hjUNJQg yzci2KJjLuJnn6rYK109DfORnLbtnw6JQCuiiBTjonRESWAnhgZjfWOfspVjSL6HwhYYNWD1LzLu x5BIYA+TUe2YCR4iox7sjDNd/q+On+S0wzMXTQzAsHcysl0EeUHW0cC7Pwk7n61P2WRORecwcabL z7Sf5HQ602zSJuhyVunKR0rEII9UYBwBLqcb+5SSTrVHUcaZLsp9rhT2k5xOZ5r1WMgCy9xQ8aaQ +E3QUU3QN/ApWymXM+0KVGWuxE9yOp1phfRhaNB/EcZAHILn23ibiEwD56iv2adWshKP02Xm0YXD +0pO2+hpXBuXPkaE2zoyUZQ1jwl9DGN9iveMXHu4AFQFVOErOW13jxgOKWS+SIjJKp04EjI2wAz2 /IV9arCnMDxOVwCURTbBV3LapVzTIl3Ki5fZA76S05zpMtNUEYf3l5zmTFcEVGVuhL/kNGe6zDhV xOH9JacrgWn+zKXcYPtLTnOmy81TBRzfZ3KaM10BTJW7CT6T05zpcgNVAcf3mZzmTFcAU+Vugs/k NGe63ECV//h+k9Oc6fIzVe4W+E1Oc6bLTVT5j+83OV0JTJf/qlZ3C/wmpznT1c0znL3v5DRnuuqZ 9p2c5kxXPdO+k9OVwDTP9yjr98p3cpozXVaeKuDg/pPTnOkKwKqsTfCfnOZMlxWoCji4/+Q0Z7oC sCprE+SA/6ypWI/ycePFepCXrzQPcKYr7Yrw9hTrAc50sR7k5SvNA0UzXWknxNtT9R7gTFc9Ar5z AGfad5e06k+IM131CPjOAUUzzfM9fMfEdD8hzvR0v4K8/ake4ExzJvzmAc60364oPx/ONGfAbx7g TPvtivLz4UxzBvzmAc60364oP5+imeYu5B6oMA9wpivsgvDmFO0BznTRLuQVVJgHONMVdkF4c4r2 QNFM83yPoq8Br8BdD7jNtOYDYyv+uutoXlvJPOAy05vmN01/m62VzP38QB54wGWm16/3oI2lrnLT 2lIfkR/PTQ9wptO9qTe46WFeV6k9wJm28fiMiVJfBn48Fz3AmbZxprTDRQ/zqkrtAc60jce5oC41 hq4er2imk1vji3tEkwtqVxkrdWWcaTuPc0Fdag7dPB5n2s6bXFC7yVip6+JM23mcC+pSc+jm8Ypm OjnfI01PG7IgiAq0WBWJGez/EjkJSZThF0waYHvIBnwsk13VDOcJu6eYESEfyE6loETaNlWkzUgz LqjdZKzUdXnMtCEEDVMTg6apiDqaGdH1IL4kJyqEDPiFd4oQJntosgBbxCDuSiG1NUVM+xjLgZHv jx2lAnxpUp95R0Lwqa1xQV1qEF08nsdMS0CzaYYBnQQM4y8RRAojsEg/luHfJDANleygqxjBdVND MIMivAmH8KURMeCLYepCKMY03WAVCWtYMgSHIaFcC4Xj9ehOTHNB7SJj3lXV12dXt7dMhyH8MsvM dASQpHsgZolMy6ICAsUUJfyfLoiyJJiGIMhAaVAWwyaIlKCgmHIAMSdFcYMAb6AI1DogBHG7GJBw my7IQfiQ1UMOZmtcUHsHoms1aw0tLQ2D6dV5yzRhxiBKQxGIbsYWpMRp/BwYtT6GgCrivlTqGkLE jEjhILyLCIYegAgMO2ANArxUAFTYEsK3Me3BNqiwQZNMGYQ0bGdfFfy2aIJp1ePINBfUrpHnVUV6 s7jr5MldzU0HUo9QAqbhji+AGFI9nc50UAkKeGfHUEemiZ4mTWUfkhtGUSEMioRpXVAUKEhiup7I NNkH/rGCvRFSxBjTGL8Bf6seR6ZNLqi9YtGdesNy/T0nifUvlI4k1+kt02GMmYSizHpaw/hL8YUo mqg9LKZRLaczrYCoyMJ0UAiqA3GmUQvlwjQX1O6w500tE+033PVKzO4R2mISF4/nLdPkjg9VQxam 4abPYpqI53jnBSJuioYMn4LaSIjTRKoPqOlMkw2gNoJQBG5OUZNA7Ux74J0kfJg9TnNB7Q2NbtR6 ddMNnS/+baJ139CekEpZNNPvJrUyrX9aFIKKLIC0VVArKArGbbt+DyFI9pAF/BIk3iOKsg5fDENQ 8H8WiyG46wuKWggQjcVpmfxJgLcybhgAdBUdOhGhvCII8C4YIfePIexZzM40F9Ru0OdJHb0faRt5 LcVe7LxBuWodrWimk5udnsOkBUUCskaQpi9jz0UwiCqkH1pTImQPAmZSR7Iq4e5wlwj/i5CnN1BA hRchGe//cN8IbNLiRUNSEKuBIhiVoSAWCykR3FWTZfjQqsdZT3NB7QmPxVc62NA69KaNjdw2z8LK PaYvYnvzzMtjnRXFn2mBNWRgmgvqAn3qaTG9qXmvHdH42Uhb3Q5ycBeYfomexcaNw/kzjeq5fBYS nfqnTfMPGo+Vr2FVeuS+rYwlh/M/0VrffzaDDS1bhALEBaa3bnwL27BhuG/jcJ5xunKv3bGOxo17 Krd5/mzZ1t1bM1A9sfYjPe9ksvOTl+adcIdpc0/H1vt37+541zzWt9QP48YRmL7hGX/fAWeF9hS8 f5e+5K+99AMA/dLWrfZ/H68q87rfPJ/JfnP56K45bjFtmsf2EKZf2sqZ5twX/v0Hpi/u3oAhJM16 591+/JeZ7NqvX3noC593kWmiPZ6CPxxce/hTFZTmrLYO796wm/Q1pNhgw9KRjERfNs8/uvMB15ne iFIonWlIychmLPXZeTdIfE7Pi4Z+PImkLSWZGs+fxlRsCTqynUzNeH/K7xGzXTb3t2/usCUaOjuG 3stkl8xL3/7KQx4w7dCXJ4g0CTSDZe3Rg4clabnP+OCGdm0nWQLmkBeiCxHYBX9tzCYJO2Ev3peX 7bK5v/2iXYw29dmD/yeTXYpOHn34654wTU4xLU5rIibNgSWlQdMM54gRxtRmkvpszbtohDC/mW2B T8mOwHRi7jPhG1OosVBSFjU8P4eyBmzXQ2FRj8DoA9gFskLg+DT9mtZMjpuZaZ7E5D6zhdWoieav Lznar6PXTj3+aEmZhqd/JI8pngYNBLPUZ0g/DUIHNUl9ZrEaHjrKsD/bogeEoARfCWAascbcZwPT oq0UaijEkqVZFjU8JoSy8HxdhpoFXRXwqTxlWoeikDWCNQtB+LXytR38zJ+NFwagB6U08cLUtV87 2PXJs888UVqmMaEI849YGjTLaWYZzgrmRgNqCdpDgiAtw5AXuoWkOcO3gjItAZpK0EBKrRRqPTWL OgioQlnMfAqznSQRIIdvjSKq8PXAreRXzByneQ6TB3QWVqUmjl+YmrxsZ9cn33v2mSdLzLQKWdNq fOQWTU6yUp/JH3/IjE7U07qKo1LYFvLoGvP+CdPWbjqEcjYsgCZCs2RpzKJGatkvy7OGKC1JCipv CNzxrdmY5nK6MAA9KAVMj78/af7mWqpNmpdfOXq45EyTAeCQ8W+lQceZBkFAyY3Diu9EJRSMbaFM i0lMhwVJ0eiwACsROs502IZppj2QaegqsYjPxjSX0x7QWViVyPTY2IWp6G+SbNKcPPvi86VnmmQ/ I0csDZrmNFupzwpuTdIeNAcUtQfZomMqdEx7YAdKCIYlJmoPK1maZZyGyAB1HFEb38liWhFDVHNY v5nuEbmcLow/L0pRpsfGPjCjk3Ezo++99ko5mCap/ECxhmnMkP/McppZ6rMSgA9BHguQ+kz74MKC qsswNpFt0QOihnhT7TEghAaEAUiN1iRyn0kCPEuWZkxLTF2QwyUPRLDuEXNjmstpL+gsrE5gen7L yNi5M2MfRM3oFDHz+qWzPysP0wp9KKJinrOVBo3d1TT1GSIn+RBTn1lXM6Y3GyhVyBZd0OQghGro vGO5z3DPiNnRA/B/SKHGQjRZmmVR4/0jzc5WpQHIs45napshnOYGkrQx1Zr+JmxMczaX04Xx50Up YHpZoGbbuTNnTp+5MAVHALIvnYXk0vIwnfkUnf/4sy0Z0pu9cF5CnVxOe+zgPKpH7dFdE2geOXP6 9OipMxcumx/87KdoFcm042Nz9kC9bExzOZ0Hc17vSvT0yM2d2+85BUyDmefZyK2y6GmvT9er+rmc 9sqzBdQLTG+/bfTC5OWphubthOmz1pDxctwjFnAGFVGEy+mKuAy0EcD0rz724e2TpnkwEJixcoQz XdDF4XK6ILd5UwiY/s3QgrqWn4yPdt8YCNw4ar5JZ6s5eZLH6ZxdzuV0zq4qwY7A9OUPhlpunN0N enpoZf+o+dMXLCvDM5cSnLEXh+By2guvFlon3iNemHqus662pnXXKJj52vMxK/1zxEJPo8zluJwu 8wVIOjx9jnj57+9pqa2fXdt5Cph+Nmac6RwvFZfTOTqqJLuxZ+PjU0f6O5vr57SfNk8djVvpc5hK ctJuH4TLabc9WlR9jOlz5y5M/WpkV/Ntp81XDidYyfPyijqZchXmcjq75080eWcpE0pbTMOz8b/7 IHo7MH2ypExvCvjBUtd9yX6Jq26PiRrNK2vuTfZmAtOnT58Zug+Y/mGCeR6nq+7aVu0JN1gjSF33 gOzI9Blq5gtPJ5rX41xcP0FeYYV6YO0mrxrmxPR9I5xpr3zO60UP7Mg+b0uBjnJgemVdwykWp599 Msk8Ho9Y4GnwYtPOAxMzvGqyA9Mf3ra8nTH9X55INm/HjXt1nrzeivNA8YLasJfkDkwv+1iM6aN7 k40zXXF0TM8G5SaoJZiHAtANkekocDFuWOSEmgYrBuISgnQhEj32uenA9Ehzi6U9jj6eYp7OWTM9 Lw9vdQEeyElQ44BUmFYF51rBuV3gbUSkPaVaANcywTWskGlYizXWBKd7xHOWmYcfS7AeeM2ZLuAC 8iJpHshJUMNq88gsGbeEMwTglG705pKu2g2rzeP2RKSd4nQM6XPmDx9l1tNcG/hQoP6ju2Jzi+FS iS6sE8Cvd3V6oCnHR1MwuBSn0II5hAxUGTD9HYGZimlYoFgXdDIFnGUOcfp/xMx85hFqa2a2r9vS 1bV86cxOaw7IvZc509WJoytnneNc4yGYII7MvwVTchHlnMQ0rkgcEHBSxExMf7obJ/iwzHz6YbQ/ r1++7VPbNnRtWdexYmkzm9d079FJHqddubxVWYnWlMtp4xqW2ZiGVS4T5gK3idPHWxcfSmT662jN 7Vu6tm3b3IFML6lbg/NP3/0P9h5+gzOdy3Xh+9h54OqM2Cqbzg4KEo2hoHiGV2yuONydresK0yVi 9DaQfGY2TO/t3157RzxOP4lId9dt2bLt410bVnWsaF/Sse5Dd+/saanvOXz4KGea81qwB3IQ1CrO DkcXkScLyUNfB5mmCJbVJrDLpM8DqcfbR2o2TH9/wcqfrLypn1FtPvk1sHntW7Zs6drStWrVihXA 9PL6NXO6Sb7eZX6PWPAlrfqCOQhqnCZZhBtAicz4DVyT+cSJYZe1gH3XdBaXuKS20x7H76jv77+p tnsEsTaf/PKXv9xf09cFUFOm29etXl3T+W2agnqJM131aBbsgBwEtU4MI7VKAnY4cQ0TTaF9H4n/ 2sfp/trtQwtWnh5qnbVsOzD9zYceeqh75se3WUgvQaZn9bOs6muc6YIvadUXzElQ5+8lu768kcWt x++Y1To01rP402Pm4w8++OCapZs3Q6Dugii9ohGQXl1Hlcfhw1HOdP5O5yWYB3IQ1AX4Ko3phTjG trt2+/Hu2tru4xCnH9+5c2fnzFVgHesA6SWNgPTqWXB/iPYav0cswOm8CPNADoK6AF+lMm223T4O NrJ4cc84qI/t4+ZjX/rSl3pqkGm4O+xasmRJY+Py1TVUTh+9zpkuwOm8CPNADoK6AF+lMW0qrWeQ 6u3LQH2cOQNMPwA2ewXKjo5167qWzJ07t3F5HQ3T7/HniAX4nBexPOCNoE5n2uxr/gFCPT7SXbtg 77j56L8AWzOTyI6udf8YkJ67hEqPo5egbVxPc0QL94AngtqGaVOrayehenz8q98fNx/5AtriRlAd S9rbEem5jS2I9BtRPBfOdOFXlJf0RFDbMW1eXV9/3/vMzIf/GKx7/j9EqFej8pjb2Axq+nkM0pxp jmVRHkgT1JGJ3AyXsHAyW6ZN80hz3V2jhGrz4c99rrt+2V/tbZ7ZOBfDdOPMNd8+fPKCVSGP00Vd 1CovnCqoI4e+k5P9zb4TzlQ7MA1Ut81u7f/vwPS/vVtsJk9YehbU/PbMWTW/03P0jWvxS8GZrnIs izv9FEE98Z0rOdnPD40cfDXPOI27X+1tqll4+46PYq4Ss7/o2fvGezDfeoJxpou7qFVeOkVQ5870 lZ+PHHzL3nmOcZrufkCRQvF1mu2q4ExXOZXFnX6KoM6D6StA9d9M2B09C9PZG8yZzu4jvoejB1IE dV5MA9XfOWKTgs2Z5sCV1QPJgjpPpq9c+duDz6XdLHKmy3pF+cGTBXXeTF+5cupgahcIZ5pjVVYP JAvqApi+8n9Tu0A402W9ovzgyYK6EKbxZjGpC4QzzbEqrweSBHVhTKd0gdgync9s1y71ezy1p7ye 5UcvlweSBHXuTP88xZ4/FOsCSWc6JAgwB0hsEG62U3WF6ac2bN2a7UB8uy89MPWH/3TjsdiZ5c70 oXR7jlWTxvRAIKjrMGVkrg50gemnNnz23Zc407l63F/77en77eENeTNt9wD9vzkyTYeUhwU6iUJ2 K57pPbcOmyY5r6dupfZZ/rpq/NAx3KBvjD3kzjVO58e0LEQQ5BD8OyAKAs5TpsohQaIzhUgDpiEJ ZF5UQ9JF2Ld4ps3hjX3HeJzOHj58ucf3Nn5oz0aP47QhiGyWplBACQ8g1DBriKqJOLuTIsAkTrJh 4CwiiiAqsKcLTEOU3riRaw9fIpv9pPoa+971mGmIvwESnU0ao0FYCyhHcPLqMEyFI+GsqEbAMEU6 65MrTAPV38t+9nwPP3qgoH6P/LQHEisHxDDQHFQUJQiRGeZKJSEauTYCMnyq4HR8dE5rl5j249Xi 55SLBwrqn86Lado1rYFilnGmMpyrLET6QGBSMkPQzFCAfCoauBoBZzqXi8b3yeSBwp4j5sU06+8Q YWp2VBymHjGD5AUwLOHaGgRwwyCzTHKmOa/FeqCwfI+8mBZF7PbA9V9U7AAhc7SzhTPItKlGYABj tsJI59qj2Gta7eULy8vLi+kB6KhT6BJdoqjIAejZAMWBJtI7R1kIBnEzI53r6WqHssjzz5Y//TLa 28Dw29YL+op8lmTOz1zCKkz1SylWyYuIQjqsTZUgDaFbkrGzT2ELzPB7xCIvanUXzzrO5d4vgt37 xStX9uOre/cDxvAWDF/lyHS+LuZM5+sxvn+CBzKOR3wbuL33ZYzR8O9+4PrK24iyhfP+5FDtHKfz 9ThnOl+P8f0TPJBh3PjL+zEqE6YRY8L0lZfvTWD63v1kIzPONCerIjzgOL8HSA0C7L2onfff+zZj +m149cX9+Blu3P9FuhMxznRFXNGqb0TqWraxHKaXiXJGpsHWoMqgcRrjNtHTdPPb+9fEoOZMVz1O FeGA1DXH43l5qDxQL6P2IDhTpmmcZpH5bbYPj9MVcTF5I4gH1m5KdkRirikSy/Q0UkyZxn8tpmkv CNcenKWK8kBDyjDBlPxpiNHkHvFlUBhIM5UaFtOJN4hcT1fUda3ixqTKaTN9TADt9wCg96OyJreE +9O6pvk9YhVDVGGnniqnbZhOVBeZX/N7xAq7utXZnFQ5zZmuTg78dNapcpoz7aerW5XnkianOdNV yYGfTjpNTnOm/XR5q/Jc0uQ0Z7oqOfDTSafJac60ny5vNZ5LupzmTFcjB34653Q5zZn20/WtxnNJ l9Oc6WrkwE/nnC6nOdN+ur5VeC42cpozXYUc+OmUbeS0OZHj2sx2CzgfcpyrN1+v8fGI+XqM7089 YCOnTXOiCLMWlePruXDEyuQBGzntTks40+74kdeSrwfs5HS+ddjvz5l2x4+8lnw9YCen862DM+2O x3gt7njAVk67UjWP0664kVeStwc8k9MmZzrvi8ELuOGBiRrNK2vuLbKBvC+vSAdWafFwc5NndqRI n/5//u+GV/QywdIAAAAASUVORK5CYII= ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/RDFlinks1.gif R0lGODlhWAIHAdUAAAAAAP///62trf8AAGZmZv9aWkpKSt7e3ikpKdbW1v8pKYyMjP+MjP+trRkZ GczMzO/v71paWv8QEP/FxZmZmTo6Ov9CQv/e3v9zcxAQEL29vXt7e//v7/+lpVJSUv8hIf+1tWZm Zv+Zmebm5ggICPf394SEhDMzM6Wlpf8zM7W1tf/W1kJCQv97e/9SUiEhIcXFxf8ICJmZmf9mZnNz c//m5v/39/8ZGf+9vf/MzP9KSv86Ov+EhP9mZv+ZmQAAACH5BAQUAP8ALAAAAABYAgcBAAb/wIBw SCwaj8ikcslsOp/QqHRKrVqv2Kx2y+16v+CweEwum8/otHrNbrvf8Lh8Tq9DS5DRYc/v80cQJXaD hIWGh2t4Iw8wMAIokJEoGo2AgoiYbxAHGigLGwQEEQYsLAYIFQaqq6sVJ6SmERE0GwsCMCOXmbu8 vb5qJQkCFCYEHqapBrIGoc0EBh4RHgappgQmFLcQv9xUEJ3F1CweBDTYKhoJB4CBSSWKBw8aw6DG LKk0CygP293+/wD9jVBBgQY1aAQ2UIChDpATPAcSPEBRTFopAhRUjKiDIMIQFBUymDiiQde/bxSe jYuwYV+uMZsmblhmoCWMfgFz6tzJ5oAK/4OqMMI4YLLLCBgoaIxiti8OgApCNABwcIKCkQ0kivYa ocGEh68YH2yEczSlKg8LbvJcy7atlRIwNqiKQEEDzjRwU1qz24YECyE0AIw1UgEAtwQLpqHla2ig ibkUEridTLlyAA3PDJjQYOfBAlIRBNzFkicAniIOA/gNMCICgAQvHZYYUYHEutREYvfDXWS21i4P NhzboGJ0phECaFTwsEGy5efQfQUft+AAohEUIlSgwTlLYAEOHIx94AEAgAgHMng4YL69WAAbAqBo b97AC5MUABAFQCBBYRIEWDdECSY4MJUJv11xwGOawaCTBhsst8Bg0VVooRwCRMACDQ/4sv+gKhQk +ERgJ5QjiAoAvEADAQggQIIHENCAAH80AEKDCgE8QIOBCQkAgABEVIBAABA8hYpSKY5VQmGzuFaB iFJkuJ2DbWFWAQE4XqjllmdQkAoKUGKiggcVLGDciAAsMOALTw5RngGAGYaEASQMkQGcQoyQJpEZ wDfEA/wJYQIAVOZIwkhXlOClASicuRZ2pADJ5aSUagGSB4UGlAABJywQJhKBOZcjAN0JwR6eBAiG BAt1CrEBAP0soB+RAJxQBAEZCIEAAbcOWUUJC5yA6YUqUINCpcgm6wQMqpTKUwIRVCVFYAIG8CqF qv0VQKrYDsHqEAkAYFUAJ9hKq0dE5Jf/AAQksFnBuxUY2K0TKJwQQYdcakBKlsr22y8EnEo6GQzj VNsEtUNwW8Rq26p6xLdDoBIAe+MWie4Q+b1HQgYccxyewcuWkumkKowjqr8ob6nCCTR8qlOw4x48 qxD5GVwCANoq/HCrNMNqAgljWVzEAiRAAEEGNGSxwQnH+ksBAmqmLHWFSzv7XAIs8CpztRQTASiq DhPG88QkRKgtrb4OcYoQrhShQcxNJKCMo5UeMM68U+etUwmj0F0ZASzgTQTCbpJAZQIzgo23AQCY xEKfAh993jbA/iiEjzT0I5UHT6iAANxSm4AAvnqXnlMJG1IarOBCpGrwCCdMZaCTQrg2/9YBDkQd QH4ZOCCgjxngVKSQvfeZ9BCB9W4gC36n+8LIUwvwAr+mV//LkvFVSsEJIA99AraKnsDCsVcKekI/ B3w+4AIIGHCJnloLUSQBAO8K/QMsehCiE+x3n/cDCBCY9QaYiZooa3vNEwOKnCW0LqAAAayTGuKs RsAK2mEm/vLKGvLQIpM0cAswQMDJBhjCEVrwhHBYWQIvhBY1xA4A1KMVnrQAgRNQEBjvyKHL5oCC s6Hwh21YEvSQBTv/iQEFBCDdgDDChRUt4Wllu0KMMkCCGJYAAVQkgRZJYABPZaKFQAyjGhYQv7XA wAEClAIZ25KA8ylBKu0DnRRelYqRlf9gY6wwQOxYsMM3HOB7YgxkGSBQASMGJIQxjMKSTBiQaywh MCtkwgtegISbzfAje8JEPgTJyTAgUW8bQNROUGfIYLjmAQkwyR6SMIJ1DQECCXDAC1YJy0tY8gjl MgJsigBL01BolUgAJhGAqYcn6KuTyOwCE61QmnfwcjRGOwJuZmME3lCTSIMJWp76iIQHXDInx0wC DOhDqsu9sAJWA0l7DNChV9Fnd+U0DQC+KQTGpWtGAPCAqAZFASpah33m6VQRBPBCFjgrJA8ozDwZ eYQKMDSZEH0CKa9AAxKA5wX9gIFr8km62A2UBeYhwEak4qwRkCBqENhAn1igo6IFAAb/JKAA42Dw ABI07VcsMOQudkmz4yFhBCaInTn++RQTbGBGN30VczYQGAdAAAYm4JgJRpIAEwjolkZ4wQxT5QGj YtE5smJZfGTFErlkMgCDqoBXAXBTVjmAOYFBgMsikMiI2rUJI+DjFVJlr5YFwEcOCEV4wFrGV5WI r+94a7peQ6TYRYAA8ZrRNuDIjAOM86ZVGNY/dkSBbWzykXKa2HmIwAKn0qqMUmnaC9LWm3miJlWS Su2AxCcEWUWtBOohggEyIAj2xA91pg0ASHWXn7oa4bN3TW7cfEiFVMUMAg5oE5+goksA+BRQ8aFB 8IYgJFfFMwCycqlUZijbvWKEAuhN/69618ve9rr3vfCN73pBOpXsYBYJOpuPwcbJmWC4LZOTrKQD NtYxKp6VAJQkAoo2Iit8lWC1JQFXz/Ybz8LoIly6U4JRlcvhJTyAuVNw3RCkkqkF6LUIP7vLY0fV NPZELbBFKMxkxTVitmIBsityho53zOMe+/jHQPYxDV6YAaZmGL8OK49J9ORTCBQEAQYCcIKNgNsM lKtcXVSii1rEZQMBSVai8tFUqiIqD2QlN34KQG28dlYl0ECOHY7zxE5cBZ1ZK2xKqMCUjYAAbdVM tEd2zYxjVl4r0BUguDLBRj65BJ0VhpejDYAKSACADCAglFKupGuVQMXweHq1X2YsuP8IEGX+CGLN aNYaqoUAqCMjwQM3lDOHIcC8vYZN0E2QZRJktZETUFcqoEvVoGt83ymwEyBD+ROIjaAzSA6TxtAt 5BD0FLUAHwGrSeguEsA8bXBRoDxWqagqaazmsbWaCYSMoKztCmtbD2ZQ2DqTARzQm0tQTE/jOsBJ i4BrYBP7CnmNJC8MMEQi6Iyki5WMVASYn2rvmQjYRsLPKJSAzIFX1AFoXxFcu8CEs83cbUYCCi62 bllv2Ap25q/B72MEWd1FWEMoF7wj9k3JXobcNy92FFLCFhP4FMlKgjK+NEAC6prUAJQTAKUdrml6 FoE9DhVCLFnObUGx9RLzOdYVHTD/dIaVm82uNkIEdF5y5WLN3QNqkYDGWcYhnKofWceYFjmHyXGV IFXixXmhqeCBNOYEdg8NgO3+1CeO1apa4TV87LTWu49kgEo3o64SBFD4Ps3S6kp0TccCxerKHz7m oR2VKJGgAemWXdZ0QTmeH2D5FzylHxFg7XzaxSMiQNfGBp/KC/pkoGELAUVwfgIMTM8TmSrBxHfB TgVY4HcNaGcDDipH7S6mggqQjgXZW8IIFpCKzn4kp0VQgXYIYDXlM78IBhnm+ZVwAuOePrkJ5SaK ETCaBaFif7VjbY5o8IK+G+EELhV+9hEgpCYIACQwiGQFBuB3O9FFP6QU71d2TjQI/xlQRgcQAVaz fGBgfJMxAgF0Ql4icBHYSTVEdmyAB4OiREXiADeRB7JiglYAQDqVE4hTcHmDApc3giWXAC8QeGkg K5xHBBrQJ/QRdqTRfs+hAR9oPU/jgzp4V57jhGYALcGHHLKAAlIoBYRkhG0BQFzoL0szg0+YXAIw OpRCSKP3HAdQAREgghcyAl8hf2OYTJ7DgNDhhVsiI7FWKWWYhnNYdg9wAn74HE9jh9CxMvTTLxdo fX/4hBAwDVn4d9oRiZORUp0ih2xhiV/YiCW3PYPIFvWSfcgCLRWAf28YVCLFiY0IhxVgiAGhAdOg RMqiUYKobs8yZP2hirqoLwawh//dQB4VAIOjyCnkZxnitx1iqIsjKAClACYBMSZlYj0HwH0ssACU uFMmYArep4zcOARjUo22OAjY0YyYWClWghbXSAhVRQobIIvd+I4wgGBj54ZBpAKQhSVhVALJwQIs wRi7MBA0MBy++I7dyAIpcSUUEI5qAAH7SBcKWT1wYQIacg3+aAeOMZEL4I4EuZHygyfYATiLQY9e kBeAEwHWmFwAuRRvpgEP+QUHIABkFBTQJ5Ic+YcQgHS2pwEBqQomIAAPUI5SEAwC4BXjQAAC0JKB BEtJsRQe8GYqMBRAqQQlYFkw+QypQA5YSJM1yYk36ShHsQBLwQwZ8QBEkQWLQBD/mQENm5GMHRYM b5MZpVCU+ZART/kAdukHe2CXjKACBLEASnEMcdmUdZFKW1mY6IaTTMAJSQGYsTALCoECt9AIktkI j0ARK7IUpSCWKsCWOrgJMKACFFERZ8ECfZZHpAkNX/FYJqAPKkCWUWmYBNmVUxAMoOkJTCUNX5Gb utmUtUABKKACrgSbwjmcbSCbxHmcyEkZxpmczNmcAbGczhmd0rkL0Dmd1nmddVCd2Lmd3LlBiNmd 4Bmeg/Sd4lme5rkF2nme6rmeT5Ce7Pme8MlL5Bmf9Emf7lmf+Gme96kEEJAYP0cFCSAcwZefBDpr 8+kE9HUCUYk7IVWgDipr+9lN//DhTFYgKyrwmg+aoQMUoUdwWUqDZxoaohDFoTFWeA6QfSARWLKo KB7gAJcmGbjDeywYACeKPPTnJQ5gAqMhAKT2AgRQKEpolx6AADoqaXpWpF5DauMjokyqEySqW67n oiNBSCmCRTgHOwDAZZW2DlBWpQ5CpG7yFJY2I9JVAuWxWviUJT4SAS46Ixhhaa53SbLSpvn0BIug l3iap3q6p3zap376p4AaqII6qIRaqIbKp4TZpM/xpGx2U7AlP+XhHKf0J5w3c0eQKrWGVjDUMwIz AmxyOZWGL6mSg66xdtZ1CSjyicwmLLvZqq76qrAaq7I6q7Raq7Z6q7iaq7X6Av8DqahOeqBM4G+0 8nPskj0CkEYu6l1GVKpuZ11RATqMIwg+EjPTOgQ+kiXRgmK50gQY6Jyh4auWwag1Ni4LVwS5NG0w QEaFYS6vsqywMm3O+koPUBB0wlt/ZTmgyi/XahotYlQb8K+MI4Xd2pyHBq7KCaxLIKz5kYGhhRXm 4QB0wq4zI3bvairxujtEeCcOYK8+IjD7mq9EQmnkZB69KnglW5MFa7BuIa5RQW4oEkMnkGCyAn2E max35q44wR7HIxUY6EquIa34eq/6uqm4ZQB4+RJMMLDMmbIqm4kI+0bkViRpiDRCkAGSV7W+0q5I gGsWezyrxjaNc68eu6kgGwD/Q9obGnkESpucTNu0PMGyNxczZiYqgdEdqzU4T6GsW1uxonU85TEY vAO0Yzu0anpWJXACDjBXJ8uRbeu2v0qPwjoxBhINi4dJHREBrpel3uUcEDB2Q8C1fctqJOAAsvBC QCO21kq28qG6rmEvmGs4TrC2yNm4jvucTytONjVMuIIzabQ9U3EvGyAeaGUbeRKEBBCAZJN9JQMA L9IJJNAhk6avVWStJOAs6pQB9/IEsjtQ/9q9/8qSQrgB6rYAm3gF2KB9EJKRGIoFLYFX0AcFtFu7 J3G7SdAOvUE39kskgnAaryQ80FQU0SQ/+5u/eKALBWwE+Ru7vsg4I1tpMfMq/05IRWKQIu7gsO0h Qm4QeU0AKKqqtu4nv9wAt/2yvUTgGurQByrgepxblksAZWJgZZXEOO24B+CRAenIBeuwwSG3BPEL wiFMv3pDwp8btqgBIFHgwmEAw0cQGDE0AhnAcodwbtr7wT7cCyKsLEJcO3xLBC9Ab/JhtAPSQwtI BAhASSjwFRSkk8uxjV98AKAwGMXif1QhTUZsBE/jWf+JAoipKFfykwbwXCN3JdQzC1/cbkJQAgYE LibGAiYgKlJsGtJANz1cxVYMxHmTxYJHxLZHAugCwazmeloUaRn3Aq4hsqJkppUWyjn4KnQivHnF vJRGaldbY2mbMHimZ1I3I/+hHBhac0apHMt2ciehnEk3czbhNcySIsUe6AC+OMmUTJ2WPDWYbDtG U80wEDvOMSiSsXVUMh9Rs0fW8cpjwcTeGK+DEgEU6hpZAgOut2zOpgThEjMuJgSIiy+U56x3lIMA AwD4MiMesBG04VJYJRV+FQCII1ejoiY8CEE8TMXPjAlXnCzTTE4GlrtWp3CqK1y+4iI48bI0c2Q2 OyilQm1EME6zXE+anAQIYC7gRbwIhzHOGiNKNM806sUgi1UwUNDetRGAEhlskkDO/NCIENHIMtG5 CVIZcJREoM13dheboCs2HbdPpwJkVCsXjUkjRAIsnXsJ9GfkQl0/M27EmgD/FFEYL8ZaKAIkEcca MFAQBmIdXzO6sevQQm0IN7m+0bEkXmSySuAaJYx7Q8DUFoYESNyyN0UBpeYi5sLUcQIySlwE86Fu ekJV5AYx8Ho8AEOEspRJNguqar1pL1Ub5tHFswIoWbrDHlzX3YA66ZAArv3asB3bsj3btF3btn3b uJ3buj3bMJWlE1KMSQC6wvVdmioZSkbYUV1e8+EBv7kRd1vcQyArjr3VlGqHiRwA9hEA70wnqBGv ILUBtxAMnM1aHStPeKJvnyMAkqG1gMIrkZq0dK3ag3BF46Cr9n3f+J3frkon7ZESzbzF0BVc0J0f FLJGGZfcuDfHRGBpV81q/xk9PEjQNkaAIrozH9c8Q5Fd0s7a0xp+1kRQ3lgVGBQiYhx+NAjd1/Et 39kZzcnCLgAiGRO9o6LM1Dr7SlwE1UKY4FsdVg3Or24UJ8t2c4k4BDDQO7pwNIXRqRWoW846TrqD yOP94ZaDVSLGam+d0C37n2KX4io+B0R9ISklKjFOsd3B2IOiGRvQxQJS2DnXM5qRjQHV4zf3AlPF Art30jCNNFNVHlx3K5V2F7LCyEFlHl5rXT6XuR6eup+NJwnQLlMVASIrGY+cKs3M5V0eB19OKZhc HsYxAuGxDZ5cW/hkAKLSxTl+U1FlHq14vBsR6kROXw7F4EkAi0SoIt0iFf9tJx8FlR+IcgDlUWkY qFgB8MRSvujW+kJQMx9A8sjkIrxba+mXrgksnjKY3Eo/9ZNEkqjggi3CZBrBKT88FQyC0Eq/AUzq gG6unQQ+4iwa0B3pXiTOEhH2JiDn/krBWe/gIiq7FAxOzQ/BDe3RXpzTjjKYfCGI6+eZYmeDENQB LweZPikFDx18Uxj3dQDtrAquJ4xwwPANDwcPzyURDx21AWduPCP2gwgc3/Fu8PFbEvISvwR4XQYp r/JswPJa4vKMC/A0fwY2fyERYIOwiY87Twg9byHMQL5In/RKv/RM3/RO//RQH/VSP/VUX/VWf/VK /zQ6P/RkUPQVogL+6r3/Yj/2ZF/2Zn/2aJ/2ar/2bN/2bv/2Zj8hXD8IXj/3dv+2A3/3eg8ddb/3 fv/DWvn3gv+4g1/4WtL3hp/4dJ/3it/4voD4jh/5K8/4kl/5hQD5ijoCejCZkqkCxyoAT8n5Q5HD lp8JmA+fU5kAnwmToJCb1WAKpdCq9/Au9a2bpnAQ1JCbCWELT6kOMV/63kD5DtpK4GAMqpCZzJAP kNkIZLkOARwFRrMHqg8D80AMfwkLsXANKMAQgQ/8UHD61glLGuCXo5CZ15ANUOnlCVD9oAAL0fBm Q9H93n8E4vr8UqQV/JvB8l8ZT0X+sa/8QPCABIhF4xGZVC6ZzeIIhlrQ/zwsVmRDSQydXe8XHBaP yWXzGZ1WGyEGrhPGAmTeZBQCYECaMoc1eSEj4Y+w8KvkYcqAxYNmQWOkxHBSrGREZarKYwNlkPIT NFR0lJSyrW6pBCEjgkayLAEAIWIBaQPAr3QPwFPXtwtCYyGCkYBC6DcZaSSRwMPAGOZVmbra+jr5 tGsEwCQNBeBB6TZXeYEXW/mBIsKgUaU8/TpBwPmqUz5ff59fSbuJHgACD+IdQJYEwoMH0x7cOjYi AMEityAaVILoIJsHvY4kjGeE2ZBzHJckEBfA5JKNSpiRZBZgxIFpoSCoIGAAmgqI/fIdQEHACg0N M3kWNXp00j8mDgA0Bf9QgUgCD00z0KjzgAWJpg42BIDgtGktACcmhpsK4AUFkBEyUCXAZYQHrWMF HNnQNg9HCAS0ZqAwsksFABrwjIVxZAHTsRqMaBDc9EUtIg6bfjRUwiYLA8eQ9hOmmcDhzqNJlwbm xomAW5tVBDiQwYEJCjTGvkpA4sQCChQMAFDLDgANLQEotJ4MwEFuClNpEBnxIvbuCAKJVOD6VzBj InKEL0BAwhMEPMJpOGBKUknvDAQWmCDh4A0BABGwAzCu4anuBYLrBjAx1oQFUCEEBhoYocAy0+RJ wAScaEBPwQgl5EcpJriRLAAD+ihCBd+IoIEOIxBAgAhwIAzgFhamoW3/EHBOIoKtiADojwgHIihx sCJU0cO/cIp4oK0Tj+hNLRxRIAIGAI4swoMXJGnyiAxYIOK/IpNazoAFEpwwn4YqiGBJLsUck5oK S+qGiBKqOuKEKb2qY4RViKAAANFsybGIr2qBoA4IpoPgAAA8GOoJIjyAygg6JWnzCPmENKK3aWLx BsUMjkhykEiMeI1EFNExJAEavtSOzKJKQKEKE3YqldVWDTFTiUmR9NCICEh4AwUaTsDrhTnrHAeX KN0MQIUNWMhgLoj+m6MCBNN04D3zzGtLmuAQ+7SJSIuQNQDBpJ0WAMlKoICAVZpClJxCEiCggg22 dFWfdU/YYFV47b0X/wxYk+AWvzBhBGAICLxFgAABEHDAVzvtCtaIDBCdLoNZBJhqJxgieMEpb0og IeIRRzyhAiGsNQIwJ7SNCs0AvvP44wqOPAAPBxCgQYAMyPL03TFG0NWEAfHl5wCeff6Z6J/1RYLb QDEkwoBOaSO1W0uJ+zWJW0gioStwKFgRgEh6eQAFwcRBYNgjSnCAgCP+e7SIk1FK2QOElbD1xQBk Pi7nMBaYt96ii5LXX78Fh/foI7gN4IWyIVivxl7zhC1hYK0kNsepjhCMz3CNiEUtGm5tjABJInBg JjnYZhoASVOms+4EIoAIgLIPwA3vNLAyIO/B84njdd19L7XwzVMOAP8ceks4QI6T5FOhBEQEc5xO O5svKwMUmtcgAx7pXKB515uCSMOhLJmuorEWKkEDEhCNBXdL5MOWCbe5hcCBF8R/ALohPMhAmhJg wANdDDODdyb3u6OYAAE0MuACSxO8bQGgK0WgjVOqVwSYgWVEXZuadkqQBwlCkARzqUAuStAbpzhA MIcZwWOcQqOagaUCq0LBXMYin7otQTCqi2AAYIAxp7zAEwlQTFNO8IIMSIJFZ2BX7hgojwecgFJN lKJRHOgcDyiQhzTIEiogwBsCtOYBHvCDBjzgiRJ4IIqoKkGoDIDFUxkgAgLg06CKUI/NfKSLOVlG g7ZGRiaa4EZPuKL/Ed4IJjgtwABCCQAZhzCxvuULjlMcDQRYkDZJXlIfVcTkUUrQrk12JgKB/OQo s4GaT0IgAalU5SoTwMRkeMCStjOAdhoxigY9KZZfOMAirGCFgplhl/0JJSU2QUpj6kKTvhMAWJh5 Ln4g8g8dKtJYRiEHSbzgZmB4QFNC2M2xPNIL26TUiExxAuMcE52fSKbuDmACd74TnibAIjYgcAJX eqFfRFDfKKZCFDDEYmmYmQ8ZADoKx/gznQlNwzoVSo0N7FAN+QzAPkXhNjEU9AieA6cTMCoKDwSu oSElg8CGJtJkoECBLDidEx7Allluc0kkcEN5ELA1IkDgBaoigM24/3cEARyLBfNEwa4IMILpLGpY IzBBBSLmriLslAsdLULJiKCCY7msVifQwAk88DbJVABRFHiBT5hKgJU6QQU8Mulaw1CCXLKVGrSZ ZUS6eoZzoBAPU1lSxxx2gqcMgRsGOAFeYzeN6SCgAniIZQnkADKZnYAEksiA44SImwr41QG5WGpU NXcEKD1VFokd6HaecoIbYdQ8VHqKzby1UUi6Fq6x3VQEPFBb294Wt7nV7W5521vf/ha4wRXucIkL 3MLMZwFvvahAXtEhJdVoPs2lDgS0EoFXgEMydAoTOJZ0C+O4dQ6SuFsAILuqJEVReDRQyHo34IBz aq2OtCLSAyXzAv/HnQMBO1nm0sowV9n+9yIwEPCACVxgAx8YwQlW8IIZ3GAHPxjCEXbwdPKgAXac YQORNcJ/9ko6I3jOK7KYyWcJdoQIIIpxItLweAWgsAB4EGnNbIpauyVKIhDgZnJ4A0btS4RzQI2i Z/AvgIlc5GpswL8TO8MJskkEiQaZCMtcyGinSoIRULcCNNCyllexRlq1LXV26xQRDlCsCOR1X3lY wJrXLB8WBMxmW9ZyeQOQFdXV977wI0HZ+ntDI/8Z0KCoA/IQ+oWnHOHJfO5QXaiTKF4ESsYAww8W +ynmm1J4LFOpq+G+zKHnxiLSg8iK8PDsYz3zeQy7LHSgWd1qQhj/4JxjQECTF/nciSIqvgno4FvP wScS0GAEwQ42n2QUOG2NVz5a2AmMOc1ffU5pBCQoqrCvzAU705cIPQ4AVSeKajEk19XhFjchUEBj MdxlJufYq+MkGNmv4NpQjkOAuQ8gmhQX4TviJdFXcsmNTZM6CY1mFEi0c22UlXrbp0bDCfw8boc/ /AtBhUWjI9KWJTFlh/hpDnU7SzxaqduCez7OOW9xREuraVgQ0HSaC5hw7dDJSq9BlMG9mu08c0Tk A7QxxHnec5Ug4J5IOMcLFrFnW3ds3o2VxFdWcQLBCkpHjcUJCfKbJsFUoGkvwINkO0WneWuoKW5C JBe2+XWcGABj/80Bs9MNQIKxklZ1lEptjzhy6DIQBrY+1zvEKXCCkjpBA705gQCA1B8bGfU9PQ2x egXDApD2XRbAJuQCMBaBA+xUEogtAuRndnkEiA5gUUEWWF4QRyQMFS00KEfcJJUByTDZx4IwggP+ HYYE2G/vude9f0Zohmn8/hVE4XeamLDqAAQf+WZjQ5pm0jznG//4SJgeIZNPfOqT4QEIAOnuue9w CiDAxeqk+FrvEOvun9/hhHH2JLix85Dq6qzolz+RR4CT+JdBYOhtKAy+9Pf5///Pvs8EoM/nIGAD Bg8AE9DhDoAYWm7vSmCprEIBJ3DcLMbxdK8E9sOsKJADx00DiP9hAfIu0BJgA76k4ToQBQHtAdiF AKDG1VSAGFQvBWdw3EaAAqzABE7wvwpEM1DA/2gQCItMA0rQAEzg/o7pAbQoS3QwCJsw0IaQEYTi Bz9pBOyIBXLQCbOw5xLhxNhD144pIZKrkoZDC8vQ50YgV6qAPTRgCoumCgHpCjaADc2QDnXvAASA BohhE1AABtqQTEbAwgwkDiGhDgvx/KCAXJ4BGoojI8aEGTCBGIrhGPzQECuR5yAgCqhAM+BIODQg ATSFigxCGJyBlzaB8CjRElNR96BAABShlzygFUwABTzxAECRFCAgJhJABShgAwiAtgygAqKQAk5R FYtRC49HA6T/oBefoZfgiABogADeaTdmUQOqUQMErBaDLQEEzBqrEQV2w516ERrbIRg1IwIIYAMW YBZlwhjb0RhLABcfIBkp4J22LJTuMRLPDieCER9DacvaQzdm8RMhgADd0SAP8iKez/kQkiEb0iEf EiIjUiInkiIr0iIvEiMzUiM3kiM70iM/EiRDUiRHkiRL0iRPEiVTUiVXkiVb0iVfEiZjUiZnkiZr 0iZvEidzUid3kid70id/EiiDUiiHkiiL0iiPEimTUimXkimb0imfEiqjUiqnkiqr0iqvEiuzUiu3 kiu70iu/EizDUizHkizL0izPEi0Z6AIaQAQaoAaSAAREQC7n/5IuQSAAOIAu81IuO4AJLkAE3rJo JkAE7lIvRSAHbOAMbEAuOYAwRQAx03LcOkABYmAAKjMGXCAHjiAFKpMzO3MAFCAAVsAzRzMGmIAB BuAC/EYHJCAAJmA0K/MG+LIMaqAyVyAAcqAyATMMasAtk2AFGgAxJ6ABhpM4i3MCbKA4k3M4GTMH lPM4k4A3GdMIJsA2m4A3ceAxIbMQCqAyP2AHvlMCKtMui8ACBsA7vxM9vxMDAqAG0lMBKjM9C4AJ dOAD/MYGbmAGWnMAYiA9d+A9B6ABZpMyU/MCdsACpDMMGmAAZPMIMGAAbPM/X3MAUuACJJQz7ZI7 R/MGeAAJRP8ANY2gQlugCQqAMgfgBhhAOwmhBUy0A7KzBhz0BhC0PAfTC0TzBrzABmJARIsGN3FA P2/0CDxUAbJzNwcUDUAAQJNgRVMzB0DASUHgBm7gSUHgMKeUBwYAA6aUMWdgQae0AVxgADjUCPwT RN8TRZeAS7MUBMozQFM0DS4gBmIgM5GAO8U0AMrzTLvANW+ASJcASe2SA2qAMQX1CGxAN5EgUJmA UI8gUBH0Lhc1UBGzBvrUUJcgUZV0AN5yTyk1PKvTCBb1UwHzLWvASNkTMA31VA8VLpMUCZYUCRSg PpfANcfTCLi0TwPABWIgOzlgAPK0A8KzV5eANtezCBTAAtz/NA0clFiRYAUwYALIM1i9YFO7AAMk ADExIAYwoANMNDXZEwM+4DNbwFE7AEw/EwNUlQF2YAAkoADmlAhIdEeJAFvzE1djgAFOMwWkMwcK IDxTgEaLYF8pcwf+tQhS4Fh/FAlyVAIOtQPKcwAK4FmJAE4lYALe0zGNdAViQAIYEwdiQAFqgF8H wAIYFAmQtE2PwFWPAFaZwGSRgEtVNQAU1EeJQEEz0wbK0wUUNE+RYFu7lQg8FGaRNQzK012bAE+/ YFqdwFjl1Tx3YAZmgDE5YDNdYAZ04DMB00PxcwbKUwEQFEwVYAa4MwYiFlcHIF4DgEvp1Wo/wAKe lghAgDIL/2AG3nNZJ0ACYuBpN1M+i4BUxXRPGXVFlzUAVhRsZ4AyZbNCYyAFCqAAQCBHP1Q0Y4Bj 11UBnDZDT/YI/jQJrtRnizVWlaBlj+BlkUBByXYGgJQDLCBARXNnj4AHrHU6B6BohTYMOOAGMtUL ylMCPoB3e5d3O5cIklZRB4BGHVQCPLVsT/Y089MGwNVTrZZGPdQFikBBh/RdzbZWB4BewTRGi8AG 3nM8m3cAnpUDPkACfJY7GRRJq9M1zdN3b1dwFXRvQzNK37JCsZRvMXY/Jxd/ieA0p3dVMUA5v/RD VfZzVxVzicBWkcAFYJcIJIBejQA3W9cIXABIi0A0CZZ2wf8gch1VBFIAhEF4B6TTYSV0dn/0VjtU dpkWgCV2AHbgCG6ANTmAMk+WA3KgW9W1aK12ZrnzbNOWCMBUcF1TB4xABEY2ZqOVCGizhRv4Mdv3 NQkWTA/1NAP0fj2VVCF3fwMAB9YVQXGTT1fVQgvYCFbWT1k1exsAB9YYBwj4X3GTVgFWiV/1golA NM92g7+gBsLzULnUM0lYe6dUS5FAeJegAD7XQec3iSXAAhq5kSvTR6/0hQ3zU+/WUR1UTH04e7c3 TI3gNAXXCBzUWB1ZXSWXCG5gfl1TAgSZgHUAMb/3hR3ZAsBVPu9XN7M4NTuYi03UCERzY1e1BQTZ SbkTeAP/wIxBF42LwI89UwIItlodlQgmeAkUoI5DE3vzWAx0WII7gJuv1JTvlHiR1kRT2AhsQAJa OJGNYEX3M07jNErHswFKOAXEFDd/uQjSOQA0WZm1N4g7uQi4E5SLoJTb2Z1v4C1x81//1mWT9H4J WmNROQBsOX+12JS7uI7rGZrfdgDiuAg491UPuGSTWYGJl5u5eQX61GCTQJqVwIKPIIOxWQyUVQlo 85uPVlrHuQlEk1bx+WdF1gkugAEyND/h9JuZllj1eaQ52U4DQKaNgAMQkzspuAiAtggKuaenlwPC s5hdGHeXWH8rmpfl2J4zV6SJIGXLGKTJOoHRdgCsc0FV/3qOXdeBg3eFYZqD45Rse3mLwVmqlcCq kYAHYkA3efo2P3MJRIABsjMH4jQ137NzubNNwfRsuVOpjQBJFbkFmjkAPDSgyRM0qxqnXfdhiaA8 8xpEc3Oic3mLLVqCvRiBMbWYj/m1RberlcBDt3qlk6BnjWBbg9aumcCbGUA3OUAyQ9um9TS0l8AC YPieR9t739OGFcB61RVz4/QtMbkILkCGAfM057cGwLWy+XZ3dfM9bTNjz7eq8TMAcvRsFdoIcAC6 ieBKi/ieVzmiUdurKXpyL9q1Q3qtB5eMPZdly3p0l0AHUkAJchsJaPNsFQDBfzsM1tljpRtYU4Bs y/MGpP9bwzd8dv/6U3U0lJ27CLq4V3GgAzbzTF3TXnFgTfmZPcMTA0wcXO1UNM02LncAvPt5qQPg NBWgAUCAsouAcDsAB0QgPH1Uc0H7Mzf8P12ZCKT2YZ2US/P1vmsbl60ZrPl7rC27rAE8ttOay9e6 wJMgqzu7sHfWBnAAfbF0ja32vyG8Cfb1ditTAnagRY1gM8eYo9uXnGm2rke6hak3Qm+AYBsAXOn8 bFfAamFTgztgziWgAbh0b8szoBlgzvHWdef8MyN2gUdcQm8AA4j0AjJ0P11AOmv8lmvTmgeAMZG0 NOWY1ZNAQUm2uZH3gV9dCWadTmubdP/8CHBzqUUzgm3/oFzXta/h3AluuANAIGhNvKSfvaRVlbjf HIPvHGA7wLSvHTtVmsgzOqKxPYU5AASA8zY7YE4noANsnQjSvDcR1cSRl8UZFdpNmpx5s92fnJuz Ezk7IGrznT07AHOnPYVroAO2egX4vWQ5+ggIvphzwNp98+HlHXmJ29YvYNm9HdkzXuM3nuM73uM/ HuRDXuRHnuRL3uRPHuVTnibXsgEwforaGDCd1OXLgAN+nBAmYGa74DpdugGekxSQk9xVfhLU1Z/T oQZ4YOZLITwDlFfHNw2O/jGRtK3/4AYOtguQlDWfvITV/RNo80GF3hAq1AU+4LOxQbtj/RrA1S5t IAUU/4Drw2AFbkBXo3lp16BCjz2kEVlkh7PPDcHrtxrsz+BKV8BDc94a6rnvS0Htbz6sJ2G3vQBJ Pxd8EXUGaJ0Q/j7wCYGa7/KcmaDvPz9hbeAxKVWVn3rdRd8JUL9Q9T30vRcJFn+9U7jPVd97Ldr0 Yz8JZJ/1kUAHgFT1bzXqzXPd37NFiZQ2FfnJb5UDGJP2KXXhKxPwM38MunhHDRdmOSBdJ3nhW+A9 kRhEv3UAdABzG9jcrdbOi9UzbZNfd7ycRaBcd6AFdNMCJGCNy1N1x5RicUBddSCOF795jxcIAsIL RjHQNYRKkWsw2LVqQqPTyclJFMrAZCaRzCbbjsRVm//dYrPcNhDDBGwfSa4waClxzVRjMvgE8FQ5 4SnVDMy01SjciAlxMIrNXXSkDBSwrRTEKDDYCB0OXLSRlpqeoqaqrrK2ur7CxsrO0tba3uJuYQyA CPnxKBqluBgVKOXcPLkkFwasfAxYuEAbC1kMTO8sIwphXB/pjF7DldrsDCi4TD99BhTfSMfcKVFL xM8LQffayLMF4EiI5iIgAyE2rqVbl4JDgBnnYujQwcGPhCVOIjoRYfGDAgU6LNFR4ieJjYApUugo GIDBgBguLNj7E6DBwAHDOmyxMYDcFhEyhdhJxEFegQ86zn0gs0NHQHKhRuWKKnUq1apWr2LNGpWD hBv/DIXcALTFDjAh55IEOKcxAKQBYmykiOEoQBOcAXRkfGQJ7YUBFZVcyCGlFEsXW4z0CmCJ15Bk jqjgELIimT99cQKysWEEbY1kKwL41LFlr+QBN/KYlhxDwmdnX1r7xNdwpxIeMRiWjLZlhV+oE+SJ dTcgcoAaOI43OHIcx9xzcJIrYMj1ydcmA9ZSlPJUK/fu3r+DDy9eVvJqQnwSL55aSQMFwHin2MJA gUYctJXoFH1XtxIQ2ITk4Fc7quQAwldC4FWWJeaBdp8RiVhEjmW5seGHfkLwoABOKxi4RROF+HFD O/adFsgAKgnBUlk+BTeTTUooEN9ljNV24haCBLdZ/4qD8DhAOxfI0wE0xE2XmIk7bOGYeqKM16ST T0IZpZSm2JFCAVcWgNeF9iFZSgeXmCKIlVg2IYEUCW7RlwKfBCjBgKtwgIMIBVChkiVr+cKfEXYJ YZ8F+TBG4Ur3mRLnnFSAaNqI6+FlZAD+GdagjEL4JxYHNs7ojxBNOJpcjgOgtUIHo7JkwaijylcF T9NpKkikcSi53ZSz0lqrrbe20lmPTkgAVammzMBNKXj1KEEMo+CFYgB9Mdnmm6kwEFBLM0Bj5wB8 BhBgDJ/oKJKAAUyIWQB28ERKtE6oYUSiIva5XjLp/bOeT5O6qIWLjgiqxLtbVAojqKUQSso5ayox Xf9rJl5oQ6xOQIWrww9DHPF3LCmAgcUXJ3sef6S0ICwpwWLAgcgjf5UxYKYx5Cwr9n3QwAWfNGEt tgES3G2eMoY7ABu7lLtFiB28PC4+IS5aoiWO+ifjvFtAJwQa7eQrhCXwsuwvWlscAiEpNUDzwWBs BXSwIAkvzKTEZ6OdttqvXOPoIzGwCx/TH+ABqXwfFPSl1qTg1Uy2RwD47SpN4BnANdYW7h+ERhSe HIQ5s+H4jTfgZIeyfefJbrwl7oKt3hrT2zS4r0YdQOdj/CTc1YaAWYod0FxocI1ku7Vkw2vjnrvu EK+w2oFbXBOZHDEcbAdONXT19TVi8NYrYApUgxf/wd0MUFabrZzD5woESf3EWNdOsTFd4IMbqLhA Tq+YzoZfB1hAZYWIWonJXbifXUuzh86y/xokbv5/KgEvn1rdIyygLCV8SQEXsIRdZIchwBmkbLfb HQUraEHxdKxn/flPAL70ARDkgCUpaIcIcZCDXbyqYykAYQOgYRdiWWACOVBhO2ogjwbkgCE8MJUp PGhCIclDQU5wgQyDdSEqYCIHwXoV5KgXQyW2Ljk3ACEQ8cEsEHJhPepbQx1eBDqm6Y8lDSud0JI4 A+BYLVdKso8EpBO22eFHghecIx3rSBVWmSJfIpDWE74WgBbI4yIHsgEGAukXPuEFA9bBhh934YTP /5xjbzmxA69E4JNqWGKHVSjAgYzAgHM4YQYHCkgSLlW7bhiyAAMKViV98ipWDmAiTjAEJZ1QgK+x CIwVSUGLdHJK/NRyBz75SwCSgS1UmINQdtCBDUypqY51KQ5OEEMoDmbHa2Izm6qoAQNE8CymMeBg HAABAzSFtQaEsxQ1QGeHAmgjcppTJAywCznnUooQdoAh3EQLadBpTeH0ogEi+KcIGACVgvqxBh1I ZxvwKR0GrG4C8yxON9uwAktOcAUTBcxEReA2hN6TAZHhJp4WOsFTcIABniiYSm1gg4IeKISrA6kN VPo7beI0pzodj8m0wsBT2GynQh0qUYs61J5m5VunpgiqUZvq1KdC9WznKItWXHgKY0Y1q1rdKlfD g4EUHPMqBVjhKVyQAnh1Na1qXStb2+rWt8I1rnKdK13rate74jWvet0rX/vq178CNrCCHSxhC2vY wyKWsEEAADs= ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/RDFlinks2.gif R0lGODlhdgJwAdUAAAAAAP///62trf8AAGZmZv9zc0pKSv9KSt7e3ikpKf+trf8pKYyMjO/v78zM zP+ZmRkZGf/Fxf8ZGVpaWv/e3pmZmf9mZjo6Ov+EhBAQEISEhL29vf86Ovf39/9SUv8QEP+9vXt7 e1JSUtbW1v/v7+bm5ggICP+lpf/W1mZmZv+MjKWlpbW1tTMzM//m5v9aWv+1tSEhIUJCQv8ICMXF xf/39/97e/8hIf8zM5mZmf9mZv/MzHNzc/9CQv+ZmQAAACH5BAQUAP8ALAAAAAB2AnABAAb/wIBw SCwaj8ikcslsOp/QqHRKrVqv2Kx2y+16v+CweEwum8/otHrNbrvf8Lh8Tq/b7/i8fs/v+/+Abg0I DhsrFRohPBMEjY6PBDwhGhUrGw4IDYGbnJ2enwEdJTQrDAyKjRMyBqytBowEISEMFQIODR2guk6j FYoTBjKrjTw8ppQrycrKpqchjSLCr5IVGyW5u9na29xQHQ4rGgTBMiKRGpQCG+sI7e0j64aIzwTR 5cYCCNhzh0MNAgxoHNmn65svVTIYUdow4poWUfAQLWI1gZIDgt0yatzYB0G4aOZCrMCkKcsgcItE GCDAYEPJNzEACGnQAgAAAkZWiABVQoAG/2DmWmZSM4gGAwJANeTjyLSp0zQNWPAwIGJCwBJnOiDY EAKYAQ0bMKJpAUFIBQAVRrwckiEGp6gaRFQNiMDOKAZeQ7BY+7Sv379OEFSQK6KCgzgNjFJcwbcM WSEaAIgVAqEFoJ7jRARsjKeDUZUTVmAFTLq033/RCOzF41HVhLAmDaxgYWDDEAcEZFQIcCFGAxkx W1zIdEFAAAEXTJi4MMFqkWfHDTTArZtvAwbMbXvpIADoirqeeqoSwdi0+fPaRuSeIGDynRIVhGkY XaUEgBYxMqwQwgNAhgwAGJBAAiVkYIJ/GTSUwW4VAOjfBSKYsE8DNwUQmQYm/AcABCMMsf8BgBri tIUDU5HHmSf/qEKAQOi16GIfLExwAQP0BULiBTx0SIV9EIAXwFkM5ILABQAkABkAPhYBgZEB0AAA C0MIAMBhDABgwm4BOADBBUIUKAN4UjKQBQvRaKCjRggwUM5+L7bpJhwbqLSCe4BcJwMBZ0Jhn4hC JGAAEQW6ZSGSSCwpRAcx7CSEgEJUGQIRLEz5owlFaFCWFSuwwuZTZBqA5ZughirGCKpsmk0H2PFQ YxP28TAEAiaIScRjgyZJhKGQZaBJAyZo0Kik/gDgqwgZNGPKBADkCQUL5UBJ2gaqGCfqtNRa0UEI F3zaTQM8tGAqE60O4eS3tEZm6xC4BoD/AAD7rUBoAFUm2QEAOyVg0733agcFqTI4a94GVLFY7cAE J0HDBQScuM0I5ZyLRLhCjIBWEeW+a0S6AbQgQ8aW/ZonhWL2hsAIJI+AgENQaNCCtuhV0IKrBccc swYJ+OsUAzWzCgDMQsQwgZKXmltox79uEOsQVdrsAAACYViEZ3pStWqLDciorMxYuwmMwhs50IKs SkD8q7/9MSn0ETEw2aUJCWRAX5UxgEdTC7lITAA2HZBFZxEbJAA2qBXE8G3WhJvXgQw8A1aCAYkf IXYoMgBwgYAJQHBpCO8iYIC0ARAQIJ/Iboz0fRmwYuBhv8bACgQmCLzECgm4HuoIXxdu/7tphz9q OONhQ+BrERUkYAIBJYjAJAM9RgwA2AhMYMKfZrFLRJUjMJABBDzYSgOyEODpBAMtOAxqCTLofvv5 Txlg/u7rp8GDCWvF28UKLUw97eF/o69/NzzwiV4HxVnDuvwHr2RxoW/imxZNOLe/Bu4COXsDDO0S +IUGACh5RIjM1apAE9kVbAQJoKADR8iHBlxgg+epwM/Q0IhzCUAE9qNCLJTQgBBYDoVOQFXlbBaA EiQgBpazXAx4oC89DIaESNyEBhqXDR/mLwq16YbX9tYf4YhwCWdJQAtkt67KtOCLLQAQy/BwAR4m 8Yx3MGEMeRKDJ0Lhhd0gwBiLkAEuYf/hAhlAwrp+N4QOiMBieSATGgeJhwoQ0E0GwOFbZLDGBoxg Oe0gwiDcMwj6DKJykZykENbVvh5ODFDnGoo+XpXASBahIZvkGhEOd0VCuvIM7LmCQ6yzqgbYrwQv saURUNYlbKAMlwHAhShUyYRZbEOQSejPvS5VAgIcyHcEoYEBDiQ5KLkLXwVEHSeNQCE+kcomMfgU Jw0AAOPQzyYJ4KMQYGcTA6AuFABgT0xMEIIICkGOr8ynIGRATCXs8Y/OQoAzqzkEchLEZf6pp4Xg Nz0TjIYFRMqABpaGJRNMAHMMoFAno9AdUGACaRsVF4b8tpsGxMAExvCc6AKwAcmhw1L/JmgH8ool JgfQaJMA6OTSpDWCtqADWTDrIgE0sBV6/XRnQ8CcARiggZiwqAP/GSID/uhGI5xCn1hVg+auIDGf 8eAwCIBABiJBJGetgAf78BzjPLcTiWlLONHDEQGW9Mn/iICIGr2CAxTlCQ1IFCv4XMLzhtCfd0qJ TcYDVE6FcIFLGYGTHYhsZGnww5LIgG5DcBdYAzSExhKBALoKgMR41gAtHuo/Z+qNPWOU1daawQHQ q4LEVhoAYvlIBhkQi5PAFinjJMCO6pKeBVfYQ3th6XrY2KYVaGKs5jr3udCNrnSnO11y+meqDESC CVaaAOL2SVG8/EY8hUCrx9pEOejd/5COKJTdYgXXfMiqgI8ccpYauasu84pt5wBATBrw1bUA/gJs uSqsPvaKCHGaGg/ySIQJMOhdGNKElJIkpYrG1j4hfUJpeZAIWXj4wyAOsYhHTOISm1gWGogcANrI gzkWYbs4VWcApumPo+THJiIqbxHW5adW6OUlkfqPkAHEpT2+KiYb4oG/aEyEccHTu54j5goOGeAq Y2EE+p2CxMDmpOwiYUAPK3AA/MQfShGBokLgbJcWawUsg6KpFciFIZkAY9GKeQh/rFtMfquUCmXM sTtenhKk9NsLGPoCiAuujLEDAZvwkzdmvs3E5gVl/hZTxlbOdH1kYE8lbHkIkTLjEf8yQDQjMGqn QpBBpIWA5gCo2ZMZdgK0QDEUVtNWu6LrAPaKYOhFYTDNOQY0EZSLBImJWtFDMNlMuILUEEgIUpKi 9GctvQQReFnT2I6CCIoohU8rz1QdGIFYGDVsMCEpBKENgLOj+clXY/gKV92GATz44pWSe826oxe0 g61HNicBAlm2NrLvueoA1JGl5Wzws6U9hCgvAQGczrbEp4CONgsaXd6NzNSqZEkxN6B7CeDr0myG OSy5299UEAG9P7FEwa7USSJoCGVjKgTnsaAEgjkQvw+FMmIj4Sx4KsFeJWVkVsezISVIGmNNIIAS lABzv2P4PamdhJZP/OpPYFini33/8V9lNCrDO9RLCtQCtSDAtg0/UBGnuZfr2MTkF0Z5t7O8C5oo 8j5EqAA1i6QvBNjrXhMgdc9k8ittInUJGFqmsyS2vhU4yCZ8REBNzmu+/DaY6o4LH9Y334TAalnu ymxnSfIsrsdnwGZOgsBaSkCke0XO5CtdFxOh4OCMZEoJlChCCVagF27y/jsBYIGsECGuEIymhtx+ 2CkEkMsQcHv3IZCvEWgwC1uJhAgCUGgSKsL57nv6Av10HAGS7wBFFNGQBGnAlCuwqsd5KBIkY9o9 P9UAAlzbCTS49Ta4n7X4eP//SNAVdqBZRMADMXBQmKcFNJF82mBCLjYtLEAgADiB/0WgG3NAAwJw cAgmOQLAAiyAObFWBRfFFH43OBAYA+9EgRToQ8emBpETA1ezAo1mExL1BRpAdxnhd1X1JrCzciro fSDUgmiAAMyXBA5gC1sXBRoAfk9RAi1AZW6iMq30g1gHQvf3FNgSftlQNScUKosjAlpIhVdHO5jm FB0wAWBIGi7zgKZBPzsohhPYAFURhrpwMCHIFCOgEgxIGv7lTnD4hxnkLVgoiOghAAmhSE2hHtkC iIx4G+WAiKCwAQlBh0yBHSsCGLhxAdrXiJxoiVMICHvVL6DSABUwOVfIDWQyI5TIid5XQzjyiXvg ADLChi6SKRdgJmiiJrqRhKz4g/9PhzApuAkCYADZwovnUX6TI327sHuqwAM+2Iu9SIprskZ3gAAh wAqneD8CkBuaAYmsoUJ3Uh7QOI5KQAAJcCdFmAeCoQohEIyE0wEfSBU8IBp80BOLgDjpSI76+HMa QIoEgDAM4I1m8A0/gTgsYIwEMwIVUCLGQAOrWEE0cBCMwwAXsY8WmQTxFkxSwQotVpFQIXzrEQI0 gJBZE24LmRnGMBIPKQXTUQpTkRAduZIXyYgZSQQjcFbAcFHVAIv7IgCGRBF6wZMO5Ei8hxTCYA7p wBC1BgWDAA8+eRT2UBUdSY0zWZWNEoIIEJE8oBJAWQuX0BC4gAQNYEsjQAMb4JP/E7EKd6WSV+dI hiAOaMgKq5AQCNEcdgkM5RANwcAKVTFU1YBKVhmYTVCTTKAVGHgUcckKhuYKroBordAcxsACNDBK YigKhOAAheCBmqmZl4CZJxNZghmaUkCYHDQyJXOaJLOUormarFkFpNmasBmbcfCaslmbtnkGtHmb urmbXZCbvPmbwDkFvhmcxFmcGHmHxpmcxjmcytmcwcmczhmdugmd0lmdsUmd1pmdoomdRfCBtNgE XNGP2jmemcadDQdOJDk6NiGU5NmeDWSenjQBwFQFujYcVOme+IlE8Lku39kEfpafAPpK5jkBMbEk fLQCF5BO7acmIccmIWAvGZAA/zhhjh5SdtCioN1pji0QAmfiMv8gDNKCM69RBKQ4IBkVoCiaEQPa aD4VTEQSAzGRAfpCAwYCo42GEyEQoz7TOWrjLgbQFnv2Ep4Do/OEOv0ReDe2jW1hEwKDADEBoysm kEKHmVRapVZ6pViapVq6pVzapV76pWAapmI6ppipFilKMPv5SQGALNrhhKonBBH6EpijI/9ZBO7C Iev0SWfBOQiQASuEOfUTTPZyN6IVdowVN5v0W04wAS1AGI76qJAaqZI6qZRaqZZ6qZiaqZq6qZzq qAnQn2eKHvDpbXmVbAnXAWnRZMI1XkfgLqaib03CMpUjBJjzTn9EHz+kPEmyLv/eOAHPqIJMFarV MqoX11LcZqgRIwBb2WjGQSHeRQTuUkSwOhNG8Y9FQqsWQ3p9IihAVwzF4Dn96ausGKzCOi3EOnzy RwTLsUkqBgCrkHDOigTR2kfTaj3gFHhMgjn0oa1jJiihhy+HtwTi2ollWK4vcq5CECnHKiKNJQBm KjHNyqo5AQD6Mi+K0lJfBR60gjk+wq+5mk1OF7KgyQQD24jkarCggrDBdGd2ZhxuBa3wKrF2SrH0 qiiqpiSCwrF4JhlD8LFLw21N1wQlS5MFi7Kiipyn1HXIwiIm5FDxeRuNth/x2qo0eyiw6jk60gGe k6/ZyrPbOgT44SNYK7S/SoH/J2u0baKyxXUfYZRw2KpF9tJoYjK1AcADwDWvVgs9YcW2IAIBudAf PmJQ6OJYDgAgXxS1i1q2E3i2aOsi+5kApnIdlZM9dkoWoWFCj9IBCQBfjhWB76S53jRX6USEIQQv EnhPCbAPwQAoltI9iltzz1gPjGl/ueQpTPATYaATXOMAgxEa9ykGDWC7TDAYWsi4jXu0hTO0RnAg 6JVeMLg2d0gkYeA5MVQ1VqIc/rGHZcArUFgEyFK8RXu8pAGfL6K89fY0UgJcTsBkX9Af9gNA7FIS I0Akr+sGDvc94Su+f0G+LmK+6oqD1KMEGMG+AuwN/AEA9oM5sqNrDDYZGLEP/2LhwFEgFvd7KHRi vPpbGvzbIv47BHXWnU/SQ74zBCVgKfH0TrjFLdcTJDbJA/YyRD7SoBBgPsgRIA6gcdyErJCSY43D HJlVEzFnQyXxdDXRPe80AQQyV75TEh9HWtjhHyVbwXPVghicwYCxwejRwUIwWEbgPJoAMU4aIAYg VjoyTQNCjP9JowDHCkVSEmKVjFMHIWRRE1Pzs0vgOfvAnzUnOSJAFvbyxW3TCv4BHuSUNmisKN00 Ey3wPKYDLPf7R6dYxVbsF1h8HlpscC0QD+uQKRcHMRGyXjHQMX/EJ9RLXn4LatITADFxJhU2BGeB wFYFSEeAakciYWpaJQxVyv84BTN/xDNjm8iDcia8skKeAzmtswSSPMlPUcnmcclIBrAQADbhQiHq RD+aILhC0FLOMpnDxmYYg8RFQE5To7NLQGY9Az0GUGq8YWmYuUpqhs0IF7EiMgLBiCtYKyBXlMzK 3BTM3Bff0GDPSGoCMNCe0zjhYqxIQMC9hWBTtchiVhl95KdF4L4TC4kYghUSsx+6RkAVHJGMCiCK QsAtJc9nZkiNJTlTdyD52ygrvc8bYQoxEwOiuKbPyMWpZgJFFC54a2qrFmqbVBMZMgH98TsQPRN1 qm6wnLR7CJh67GxfHLBTpwl+dL3qYwIh3dMxS8pU7Vcdo1JLywT67NIb4TL/L1XWZn3WaJ3War3W bN3Wbv3Wa+0gmXyJSfDBgpoB84VUTsJDJaHQIVxbEOASRk3UpZYoE53Uq9Q9R8Ar5tNrEKAoG10E Doc5zIcNXOzXJP0jaIEyaRPVqnyAyNzSYt0NpUhdpn3aqJ3aqr3az+UgMrABdI1rRbA0cecqHUBP GRRafg0lFJI4kULYn3XKnYXY0wMs0/ZOencW/kKgRfDHmNzNVw1tmT2r/mACXW1pTvKsViXao70N MF0wfqIdl2zXR4IlEOM5zlK4K7TbfVK6LNVoulPUygNDwaRM71sTFVASAgXVFtQW+7A0CRNMnhNa xKIjDmAv0Y3Kme05LDK//yi9XyURGUIY1t3NDf38FP88BJf84KtkLx2yJ4dCThrChOuMfW4bKQhy H6xqAoKSWTRIauIsluSUIQ7SSZ5DQGeRIRlyUprQUyneNh0jvQq+sisUxhoCRJfyvUMQOQlE4RWu DRdOGpcsAhvlABYYvNryQuSxDyHwX7AlMJlIROoGM4zwWNiSUZnCNTSwhDIQkEdQJe44AnZrfATQ 4taIMMahQrnQ5Wc2b8G0VCS8hOwBj9IBL4XeJRaIBE7+5LsQ5YBxyX9hAC3uovkzOXmw6IwOCo7+ F5BuhjeppqmGFiRDA+h96dyd6Z+w6X7R6U1hHwGCEeSDLxmQjW+A6ajeCf+q3hes3hTJkAQKuRl7 YOu3vgm5/hS7/n/CPuyAUOxOcezel+zK7gfM3hTkgXPucO3Ynu3avu3c3u3e/u3gHu7iPu7kXu4n w2HRrhHTzhQl0qnu/u7wHu/yPu+bKgO0nu6csO5MIVn83u/+/u8AH/ACP/AEX/AGf/AIn/AK7+/4 rqJI2/AQ3yL6HvEUr+kPX/EYT8kXn/EcX4kb3/Eg3w0TH/IkbwcjX/IoP5sf37iSlfJucvKx2ZRm WQEVwADf2ghU8ajEaGh56aivgBTFQAkVIJkmw0suD+UrH5xkuQG+gBRysZc/Lwu0UAsDTQNWf/U0 UKVYb/UsMNA07wu/IJf/q/Dz+EASR4/rSV+bhnmSKiEMQk0L6tAQ6blcZckCpdAV5GAOkamaZ48H MM+IJSB8W3mUHLYCNGD0edAB0wEQz9AKQ/Udc9/3YPD3vhgOuXEnLXb4kW8HjuQTslsRwCf5tY60 zZQh7OkPNoTTOwYBoAoGYdX6HHGT17gSIZAPMrkJW4GYjFMBIyn6akCdoUPfVRAZkxOMEnPqXnD8 pkGEJSJHt+AiI6Cs0eBg7uj7k4+002oF1G0E3sYG3d8XG3CDr7ACArn8LDAOjHNz1h8GzDkK7uoA eSJ0JyJ0PjIdlgP/PeSRnzYdnBFuz697QOAoBYhFIsLRMBodiAACwFhO/48O4mhEDTSE2lHS2HF0 OqOOFp1G0wgGA2NzVs/pdfsdb3dURLKJQClPcJCw0PAQMVFxkVGRIWRuAmASAOJIEiAjRI5IoIWy RSCAgXIyIAQgK2AkiiEjc7OogQBiMoMgEMGAUsaqaETEVmNpJWFShCaK7sJkwxjAQJVo1mQS1ygk ZtJkYijAASDEeKOxyIHHjUG6nL29sGSlj4CF093+Hj9ff5/f6HGORgUALSqIQgABgoYKPADIKCIA GoMKDGKYQICgAsIKK75VCMQKYYiFDYl0aKGpQgUCAHgE6JAggUSKGZw8yRBz5IQipAxMbFFLypxd tyqgaiErAUoNN+XIYP+ZkqEIIuBihGBQc1EDPm/W9fOar8RWDd6+ljV7Fm3aQ//oANBJZALNhwBE BTBwwUgJAMMCwPSSSRpEjsnIFSGQIcAGADSKIDBRgYiBBJwUkythgoCRXUHV7OJIRAMAX0uxIsgg ZYSJz0RQDQH3lhECHhfmqbXN7pwMAoxv9/b9Gzg7tmo6AJBKBEJmIzHeBpqmWHmCGH9bGkmgk0yR DroAlDHOwrmSDo+XQGgJEWtiZXNkmDDCgi6RC7CJiMDbwXmHEiuzgIO8CAECWgghveAMzEMrAyYo 7MAGHXwwuOHSKO44VjgjQgbEjghBhAyqYYkI6f660C73OhHQhGpMUAL/lUkuuIqIZFKcsZoEAljJ uSfWU6O99wBgYQsaZ5wkkA0IYOZDJ/xTRLYLNMgRwijVWMEP3qS8Esssy5EQDQqvAOC/Inr8xsMW RKgAvupEpMLCJQzQUJIEZOBhA0m8ceBISiBTrAU3/BShJUlyhIJELcYkAj4g9YrBTzdEmOAMhmKg bQOGlAQzEQZaeFLLTqmoYD6yPB2V1FL9gWQOL7fQZIk+5UsgPxD7mo7NvVqVSrEwA2CogQYYRICF k3oFYLUlBBIVnEKpODSARImIQbkpwOGLCFIu1XUQB/wQ1dROOwihhWK7HZdcB7nUQtUAZLCxMWWK o28FWdecghW82pUC/5UcP9kO0yIEciIBe4voSccLUVF2CmadvTGDHHlo6V8jnLrWEA0SELdcLbWF NOOOPbbtXCrSTcaAJliAIANvRDBBAARGIEVeWrdAQA5WoKEBAQEyaOGM17Bg4QIATBhi5RV+zsAA RI3DmYZgfFnpqhFCqAbhJRT+8QgAEmDBZYYgg0IGLDbYJZVv+h1kAgO4/TjLEC4okO245W4n5CmK c6iIFT4E4AJfnvhkm8PszUDDU8pehaVgJpEBq9AomW+xLch2kayMKIEAyJJWmgQCgVBV4xMjIKor sWeE5kwgUFYSJZmq1WhAt7lHrSABK2W/HfdC6p6CAdKnEYAB20sCXv+AIVj4L6UiaGAgkAYYsGID OOhlQJ1qpXGAer9lWQEOKJ9gYAUynqeDeyMQgPG93rk9f/xRrCihfTwa2DQR/GTJpwE58kew1/7r EcR+0yjHBmKgvdwdEIFq2F0CsWSAzx3iMErQmfDYkQGpJANbqapIKSAwAQPe4TBniBeDFuGMtTEQ hQhc4AE7kBIXvjAlmbsNA46TCEEFYIT4gMYTCEBCOownOQQQ4gRq4UM73BBPXXFEDVPYxAOuMHcN KMUUJ3GU2yDgAickxA1zeA8TJG0Q71rC/KyYhxvewwC+c+Ia5QbF3DkAjnGUYxN6E4IHEmIEG1AC jnAYuTzmyAGFoQH/BY+wAbjFiDdf3MIGROUrRhrBV94Q4xJI0ZU8FsiQAaDBEG5YAj26JJOePGQe NoA3Np6SbW5E5Vk40QHGGQIBinsMH+MlAMWxigifcIA2ABCDYpVAccYRlQCeEYMNIE2T/SrBBPYm Am8IpiRu4R0AnDMCp1hDf9DYTAC4CAByQOFhlCDA/wRRslWes1wauCM6b6MBAjgBGIYoAeEKogGU NayPO1uBABiiHAOYgDkCEIBTMtcAjQggIxAIBETSKIDDmEAqSzJo5wSKCuWUoHjRpM8WElBDxySg IKSwVwNMoAkBZKGb33TRPleSwTxYhZ0xJRUNjIYFm94UpznV6U55/9pTn/4UqEEV6lCJ2lNJaIIB 0RoEDyxijhQpIV4X4AQprLALpV6AXSFQqCwS8ixTBiA0EcUUDTJgOwKsyG4ZYM4E2DqBBPCsCCJg V9Y4IsUycpOafVQpXEM0V0IwoDoyFWyWKmAAERwWsYlV7GIZ21jHPhaykZXsZClbWcs6lpeVCOwg zOSmvNYSkiaQglNEFS8ntABS/ruLjnwnxaQtaQklcMAu1taBV1ARcyXRRP/yd50tSLMIKdXRZpk1 CMAOFrnJVa5hGsKCOr1DVsyFauSMkAG8FDcZotjbFPtoQEXCNgB80IaKamsc3jZgBLvoDxVt8Vul ChcKD8zQIWC6XP/73neVG5mGDLxnB73csZvCQ+Z8jZAMIGlNiAkmAMREs4Tv9isY81HHSsq7USIA IDPgoI2CCQAJKb73s97UkXwLt0Uj4hfFKWYgAVxqB98aIRjTlaFLRKsuE9QDIkN4sbSwJosdLgk+ xWJIhamgyAacRgsfNgJ8wyGxEgvCmuRU8ZSpLDcHCEwQTCWLadAaL/oIpKpnUxe7tLxk5TDKCAIR K2RCQ5aX5HUJkzRfvwwQg3rIYBhKDm6IVUpiQxDAdVUW9KBNRQBq5eEyEFgBTRPw1D5yYwM0CE11 diFaGoyNuoledJ3iEwCIiCDSSzGO2SDDChkMshhCG0IDaBCIuw3/EtYVuEkgwBEKGrBgF1bQM1z4 PGInF2IDUiX0sIndrfnNGA8jCNokNBDjPq5g2SxpSgYq8KEY+O7KlMhAsSyXiagmMyjVpoQBGEIO aLqEvXxLDwtMZ8xpjHpgeRWISjcbukEgIAEnLva++f2gXeq7DjR1QkDOgIAVKEHgv4YHDaRM00/G WaBQJUcDVoAVeFScCBVwAjzIsgKPf5wFWtzAouux6AJ/xuBD6MAKtMcCjNVhfi3u98xp7hsaJECN 9iDwckfQgkDXHOhB/0rPD61zEyk3WDkX+tKZ3o8GGHaUjCiuTDvAgxZ8sOlZ1/o9NPXzQ5RAi+cM 9jW2XnazuyOW/wYAeNBHcCRknx3ucUcEtJGR9QA5Scpy1/ve8UClBQl9BLMJQX/5XnjDz2EFbvDI zFkwASeFXesRwMDkKV95y18e85nX/OY533nPfx70GFDBDg7vGyNdgAeEnDICNGDY8BXeAy8I/exp X3vb317zByhA6X/D+j6EQPXLPd/vsS73F0QgxSfYPe+BMwINpE0D9LAv9kRAboYz/wUwSPEDls/8 4Dh/ArqpgBJRidEQ+IFOeS989rfffe8bKGdtIDfL2ZizZj9q/O9fAvtRzH39Q8gBVkD+JqACcCZ3 SoCmBjB4CO/9+A+//O//pGQEBIBDDGsCom8EGNBbEGB55M8ACP+A/iIQDRzwviBQBK9EDIAnbRSk w1iOZqREPybQndJGBhxoBR7uBNOABO/ABVwADyjAB5eABCiACoaQAo7wCEkgDYawBqagBpAQCYOw CHqwEEwwB7UEAbkHHWRABkRgwTRg0RBgf8wCP5AAeEKAAGhQNxSCBczgCu1gB+kABnpgAAagB7SP DkBgAF7ACCjAA+rwBmxgCVSgDgtxANzPCFSAA+rwA15ACgMABgyxDnugCFDgDwcABxRgEKzwDUdF P2jqEdKQC2twAhbMKjaCBQYJAcCODFoxO8LAFcmgAcBukEaOewArDQ1gFL3wFDcgAztxEOJQDRQA E23ABhbxBOb/gARuYAAsoAiWcQYKAAP+0BmL4AUkwPJAgAoKYAAOwBgtYABugAiJAAMGwAYqTxMD gAIk4AMKwAbA8QEEgROBcVzwowTyiHvUiQfScAL64C4MC7EuoAW68LAMoAX6pFEuwE/YasF4QAPA ZwOaYAzp8RCEEQ1IoBuNwAMkoAnTwAJmoBmL4AEGAAWKwAYGIAhrIBrnIAIGIB4rsRGLYAE4QAte 4APGMQAU4CbzYB4pUnZkEeyC0mV0KiiD8hV98h4sUgso4AVKUiRJMg0i8QRmgA+JAAcOwAhIYAZU gAgoYADSMQ1A4AU6sgg+siM/AAOKcAYE0QhuIC3xoCeRUi7L/04p6+AayXIKSEAC+HAPi0AC2FIm q5EYgVABSO8OPlIJUWAAQIAEYAD5imAHXHIJcKAq7yAu5xIzma4u02AHYOAFFkAb0QAxA6Av1XEA uNIIcIAmA6AAPuASB2ABDJMObqAaR9Im61AC8FAxX7IIcOAGeBIRM1M4l24z0WARQxINIlH7MLIq I5M3iYADPoAI6LAAFAAEFAAHZsAp1YAbxxEcX0ABYAAGDmAA8PAGsHIKP0ACgHM421Mz8RAPnpAC FOAGcEAJ89I1iaAGStM5lyA6icAxjaAGbsAD5uAkQzMAIgA+p/M3A2AkCwAFUAAGOGAG1hMug9M9 M3TfilMNdv+TCiygQYkAOb0SNXsTB0TzA+5TC05yQalgJJ2yHBnxBDhgNS0TQzUURweNQ9XgA2q0 CPSQA2ygAIYUNgvAB7FxCRagGrcRJbWgBv4QQdHgBAbgMdVRBR5ACRfgRtPgMnPUS1NsR4nABVTg EQMgJpdgJCWxEJFvASozAGoALYngAVr0M5fSN2WzCE4gGRNxBkigBjAAT7XyOeugS7/UUJcrTE1z SXNyMZ2wBx/VKz3ABZqwHKXwRa3SQomABD4AMI0ABdpUC8BRRQMABwpUJdGTCGygT9nzUFsVTFvU QA9RARTgJCszAsByCkpTHWfgBh6AVjOSCFryAE5AAR7gBiT/4D5dQAF8sAYW4AbCc1ajtQkp4AMW wFdndAbGcSQtYFZfYAD29EJdVVzvK1GJQAUkgBE7dRHx8hkHoEB/dAEK0QPwEgTitQ4ltQiIMRnT VE2bNABQ4DgHgAO2MwAw4AMAEVzDdVwXFrnKVT8jgDGXAAWidAlAgGCJYGLLtBJBoExJgGP/FQRC VmRFFi8pAARwMitBAE9ZlWFblp0c9pQK1WVnNoFglo1klmZzsAZG1UB2Ng98Fh9sdo1wNmdFsDV5 Fjhskl2LEFxHcmXZQWidiGiL9v/AUWN/4w+XdgpeYAZ+1AJQth2itommlmrfjxuv1jeydg5wQDr7 4QUodrmU/69sgdFklfBsA8BjldBkH7EGTlZMI3ZvixAEqrQrQ3Ni8TJvjUBliUBti8Bkd6AjXaBe PyBkA0ByR9VjCZcILBZvORcPYk8FcE90H4B0SVd0T/f2VED35vYKXcBbB2Ar75YYFQAcYXcsMRY5 iREGancGLAAvDbYOFwAsTzIC6HAAODVfv9IIMJFxB6AjFcBeB0AC4nFKDdFBB0A2gRc2wXI/D0AF QNJdkTYsVYB8y9d8zxd901d91zd0g/cAZI9941d+55d+1/dpWdf79PIDVEABMIAdZ8AHI3EBrFUB uPFda0ABnJIYB9hXubEywZFbFYAO07EcZ5JYvfUtldMIPv+AEgNAbYnxBYh1RrFXWRfgA2b1eg0T gmeVDvEQTmeAgLlxS3+DPOtwUfEXhw2hHLcTBQ42gKXXUql0CogRWZ+S9BTzLaHzBihVYMmyAAAY EstzgztYbV/AR0lz+TggU502ACIziQOAA5b4TdVTCg8gRRtkBzDgM+vwdnPYjQuBAzrYGps0EgcV eZeAGJ9TJdNyJEeVGEuyHAnXKzVRg4uAg5u3CcnyCUEYOts2hQOAEP0YKrvXCO72NxqzAA6gB2xA ZZHzjT85DzDyhu+2kP1yAYZYio1AAk70ALrWCPqzHFFWlKN4QQ/Zg50XYwugB8AXOf9TTrE3AFp5 CfpzP9//lQhEtTco4AEsgANkbztrIGFBWZrpYJYrmY5T2S+vmFEpVgIoUZhfWTJjOSsPkZanGJG7 +AM+4AC4NTKr0pcfeZeHWTKL2QiQOS0k7wDW+QTQdpr7uQ6ucgmsNoqjOU7xWHk3OC0j2QgikfR2 uA+luJQDYAaoGJfDeFRL8525+HtHNRJLkp7LcgDEVx+UlZk9oAAiQGv9WaXrQJzFFF1/WI4ZVXMZ FVUDYEpJrz+LwIyZ2P1U1QdzOgD0ED3VFliJYEqrEQe2GJiBOpg/IJHdtZ5D2it24AHy2QMe4GJX WqvvYFM/4ARudQFmAIojsRsHtxyrsQYiIAiJsRsjQPI8/xmD3dpbXzJGLcCtuZE3b+CEI+ABsnOo cZkbVcCtTxI5vTVAufiWMUCuJfNNoRqkRbocPFaXe8ACYICftxqz54ACjPcQBToSVcB4o7EjFXP5 8vg4RfsZX3N6i6AcjZURvxgEmPF4I/FEA4AOm5AEavh4beAGTjmoD3YArvcxSUC1eXM/Y9pbLzsR KOAEXiCfBTuzo9sQ+LokqboJI1EbYWCfs/IBDJMYkW9Wr1aZFeB3URKaYQBpEZi8bRoPQeA5+RoE mnAHwFWZtREFsLQPfZVdHyBK+TqlD6EGdsAGXoCyTwBspRvBESGi0UB3BaGlc4cECjifbQAG/jvB L3wQFv9cC4gRbungweeGAlSAmS1ABbIaw0/cEDScCjjcwQfgwDsGBDAgny1gu1HcxhXhCS28CHJc EIaQbVxA+XrAA2wApW/cyM+Oqq0aq4+cybVOsjW5ANC7yad86Zjbub33fqlcy4ktwKexwJV7y8Nc xSI8k72xwsUczYctxEe8xNPczQUtxmdcASD7zet8sIBcl4cccu18LmvABSJUQa9TTzGvAF7A0C0A 8x5AT0U2Ql2Azpkuyd/XwPm8E//8VlXgHV/AA/KZ04Vc0y3AAgqgfsn3HS0g9gic0zk99kT9BCx2 UmtOsnugBwogYin9/0gABfi60Dddk9/XBlSAWFWWAh7//RCGcAcU9AQw3QI0uQfy+QVIHAZQAMyV y8rzubtt/f1wXfk0vddZ3WKJvSxw/TofYMA1edUFe9pRKcBtwAM4oABqHNsPzwUiQMRRncRbPd0P hAR2oFjZ/QA8gMQ/lp3IPJ8xIL7jXd5plcBf4NcjANxHpQZQ4AQwYNlNGqt1/HbWnLJV4MURHu6A 3AZmXLAfvmMinvs8YONNXG76NuR1b849nu/6dhoB/uJXaT4LYNNt4OXjBsgtoAcYfs9hXu9qYHeF nMgxfo3u27k9YNLLhd6dvemFXu9AwOevuuMHqzEJnOnz3UAwWdZpneSlPugoQMYP4AGu3r4inMDt OkuU//nKr13s904sg1TlqWxMmx2/G2TdUb46uT7ug+4ErB3pqWx3OQADBr8fSLrgO/zvz04B/p3x +w0FmFkFEP8eUEDEKfvsG7/wdsADPABWhW7yOSCa+YHl87k6w57zl84GcKD0s24HhBzty6Hnfx5Q V//wdoADLED1aU4FrBUfnl7SZx/3ze4EhLfwKGD32QGTUb/Wi//wjpH46fIAeh8N7nvTr7ruoV/v lt36mQ4DOOD7H5bdZ31Zuf/9bCCmDUEajdp378EFLEAbqd7vKQDU798ClpwQ2t9B378RZBwIAsIh sUh0KSyHAyZifEKj0im1ar1is9ott+v9gsPiMbmMBf/hSOPZTfgaqM3F3UAVUA1Q2cig7+8XdLG5 wckFWNhcoahYcFg8UBhKTlJWWl5iZmpuytVwOI1J4AhZFFKiDDwE1NRo0T2QxJK4YAyccIkKsUqS cOxI1cDYLBXAxHEiJysvMzc7P2M9vJTlHppOoqpy0d0W4Szgjlo+eDxRPFj0vGDoQbu/w8fLz9Mf gHbVPCzc2JDciJcioe+GimMLCpAoIIGDNiIPcHyw0G4IBRsLFVBIFUBfJCEnPHy4UeCXEBsfXAh5 ZeTAByIkVNz4UKBjgB0LFBRY8KuajQVqQOiE0UPCTDCeUAqJoGKJBYz0nkKNKnUq1SoUDnzpNQAH jhn/HBaSGnBgK44BEtoN4MDhA4cFA8rp6kFWgkYhIGZ4LetBYy09NcZyLTuApAoOcbgZkWBhiAu3 XD/MAGF36wIceqq9UaMg7QeuA24c61LgAYgCxCK0qqp6NevWri+BmOalFCgScnuEXdARxQfcAei+ SP2gboEB90pFIrHw8AeNePTgkSzExQe4cwbY2KF9R2zdQw5I6EgCvBo+voVUCxhg842OMOqAOSHh xYOJr+/jz69/PxEYsgUFwlhaYd0TwAkDRBJSaD2I80FDQnxgBwiDOeRcHjXBUMQNbRhBxx9+BBiA C8YVMUCGfDyYXiGbdSOEWPEtxp+MM9JYYzwgWLcF/x8KFKFiaNkEMANWRNgwQw2oqPOCki8IGUBx qaVk4UQUCOOBY0/QQd8DW6IzQIybebCkkgMEwkeLvwG04gDSCdHkFyokYqOcc9JZpxxXQanFZmyi l2ZoGWEQ5JBD1ELChB8O0FsAY+UJ5HMl+YGDQuB0OACPRQwHHaKJLmYmET6utyYRbs52qZ2nopqq qkZ4YKorlvboJxGoZEhqSS2hcoIssQxRXGgqPboZBhTEsQ+WdRGRkR2bRbDrMZ4OAeqeow7KhW1I rZqtttvyp0C1WkSUrFcEVohSSEWoBWGMQ5zgBB8FDqfKo2sV8QGl1z0YZYYj2uGQHtD2GZZmog5h 6/8WKoTIrcILMyzVAa5mUculLtyWW0cRzBAjXRakVot0NtgyxHDd4HBDOxE0J++FxZHkwl7iXHdm ABQMFcde0tXAcgAAoylwqHwanIULONDUsNFHI70MCt5xsZcENwhpLyFvbJhWHPYuEBJdgeoy1tN0 xRkACnRV/YYdfc18w2dQf9C2EBjcgBQfIW1YdWSMlbVhypOdOQOlmRloIhEDnLdFD/kmnbjii8tx Ag7YaiEUDnaE+TYONZzA4JkDvECCBQeR1N8BC1jAZwAvLeBBBEPz6HhHFOR0OAkKcICSCj4JgcI3 C/C+AH2Qr3JCWwXcswMOGX4nGwZpBIBG6AFwkHD/FkoyXr3113uhAtGZBH39CzliH7744xNxwgKm T9I94xRLT7777zMeAQ5cVzJg+DBMDr/++yvu8gHPG8IGMluc5ziAPv4hMIHaclw/FOgFBjowghJU VQFVkKcJSsFbHgAgBjvoQf6goBEPuOAHAwCDJSCvhCpc4X128IIe2MA+GHTBA3rQA4ixMIc6pAoF MMCBVoVGgTtIhwUKtMMjIjEqH+lB6YL4vh3YwAM9UAHwkmjFK8bjHC8sAAicaL0aQNEDTDAiFsto RndQgBFMhIT1XHAC03gAAxw8Ix3r2AwkFMADcTxB0RZGAhio4AUHeEQf7WjIQzJjB4wQ42h2QEI7 /6HgBMM4wAts0EVEYjKTzjjSCSwgRg8UoF1V3A8JdqAADIiRkg/YgRc16cpXcsIFEUDHEigpwAhQ 4JFScYEpMaCEJbxABSAoJCyLacxklFIBjDhADw4QptHAYAfEckcNXIACEDzABulYQA88gIgTDPOY 4hznOygAghMgTJA2DJMFCmADFSggAiigALF2YZQazMKapnwABgpgASUxs5sWwMCWpIiBVpIzoQpl RjUjoIAt9dOTzewBB5gZphdYIKMabScGOqrNjWb0ohPtpkALgAEVPCCeuXwCCmzAxAMuNKYybQYr YkGBCETgnCfYKTpPqoKfApWnO42nPF3gAntqIf8feoTFTJvqVKNFIB0FkOFTq2pVO9GCkji8Kle7 yp8aKECKKiCmV8tq1tWgoABMJONZ2+rWpwikmbp6K13rKg8YSJWs96kBfd7BV8QlxQNU1YJe7WrY LGJAHSnUDwle5I7Ggm8I08oezA5r2adgTpBU1E8NOPeOxv5HDjeQwGVLG5UdFCB6bFVNZ0N7OmaA dhLGMi1t6eGCpRzgBLp8hwt6IqQWtZYiOOhBHGghgYw9L61QaxVjZkC/IR73BWwa25koKoTGWoAC TOKAqWAggQLRbgY3LEJvj1uUE8ygD2zYbW3buwz/cIAd9CBB1mxYlgAFV2xseZ3abEiXS1FAAhL/ sKFb+uWC3KZkBgPugdq6QYd+CWG0150BDiSwgAOURTYHYtMbcIBhLw1hbITrARsMxRIheYC97l0x MlqqDpg2A2THKE4kgjuhA0CpBx9oRw10rAYmEWEvThwKEeTSCiANYbYkaA79RvYzIQzHVAdC3lA6 Qp0hlYzFWoYH5pbAVHcUBwZQumRnSxcuAT0IFTzayz2C4cS1hO6PR0ZWAJRsvyFwADeTdUQRuiki OvuwFbPdMqGhEdUejAQaAR7Ahdmoiw/QZQCQYxYRapCxmjTnwicYZfP6gINWYQvJQrCzawvQkmkt OXV61KOAAzfHOnOo0LJ2xm27qQAVYwJ2zelD/+dW0RyFcIAIeACgeHNngfT2gWNYYpIf4iRqWF8X xER40rQygqhzPeoJg541t5mhgBdigNOY2MWRAgnizpbjPfR7T4EsHYg4gBGVA6DfEOJQSgyMRRUq STKHYksEC7QB1TJZBSugtBkAFivW3V64MtLqCBhX4gEfCA298kubaIdtZ4JTSI/uNYTPFaHYyiKC 1E63lSKk7skBYFARFHCLET0I4IJWOMNrzgmBiPHLmUCFBeLAm8XktwYWTk0pkIeCDZVn3qnhA72F sJkRTkYb/0CJ5xh93V+roeq/mOx7EOJ07AgBJCThQ4C+gmubo10SseFAdjRxIAXT5XEmtw4fZP+j FQGb5R61aFtzcCwiCdCvOHz3LJT7cFyAk9bkahm8NiYbAJDBnfAicgve/X6HRC3g7GnfPBl6aOtM QNHDuo0LvWvYkS7jQOdJKcCnTTW0B4HAAjh4wWJ3JsVb/DMuFtSeRCRLMGPjoClFwJxcK12YdXE+ +ZYAKzM3ez1KKz/6VEGtI1bbMBdQ4NgIlT734RFXD6jeaKUgU/fLPxW8wrCw2YoABiBu/vej0QaO qD386/9KzIlV3Pbfvx2HqFr+A2Am1VpuaV4AGqAOwYAU2YD6HWAD5lBLcYB0OeAEXpFALEFBUGAG HlHsRc+raeAHThAtqMMAgWAJRhBYGRQDmuD/CrpPWr0UC8KgAsWV7MRgDe5PbCDaYNngDlpPD/0Q /fFgEDLOCSxBuAnhEVYP9RUREjJh4ryEM0HdKTXhFC4MfBUGrFBhFmqLC4zfB3igFoKhVOATBaBA ToEACLjcCfBTRxWAkmQUB/jBDGAUSNFhR50UT8HAGYIACqCAC2xfGAJiFpAAGUYADJxARIXJEkwU M1GSIGlUAQDVT50ADDwAOOUUDGBiJmriA0SiL4WUSDFiLV0UIqQUCEgTCRRgIO5gNZXhIf5TKlmU N9lAJSrAGe4ACvDKMsyCdoCAIR5iGypiM+lRO5HGKapiDZIACgCSP6mTQBGUAkTTSuWHNTkU/zoB ozBilABJUyoeY/LVgDkhjESpwzuBkzSuSkM9lC8x4guY1AmwUjdyHwnMkg28kDq04ztWzzdikw3k UTdBIgwcFTwunKEgjA2xY/uZo/6UkiT90kA5hUCuWCShEiUVgALgYgnp4yINEmn8IUR6VSQpgTet Ukd60JHgxCcJEzd6JDm5AAyYxiA9pB0ZykTSxxeuJDktghjVZDFRAE4QwyXdZEKhACrBkJgplCKJ kQUYQ1AWE87BkPuJkxYhmk0yJRZF1fx5leeBH0lWZQ4R4QFgYFvhFdvpX1eukAI001adFeyQpVke UQQsAVSalQuwng2opFu+jwu8AHe1V/ZxAP8Q4qUDKcAC2CWLRYAj3GVgWo/8UaVl1UA6qKBiho8n caUQQKIXgGQTFEEIhQ5SZJ/1gUESVGYV7AA6FENZqsZD6KBkjk8baoHVbYFefsj28A0pxMi+yQGN iQEMuMWHtM9rKABtsub7PMC3WAFbbAF9zcCmxYJ3xU29tYK/nU5iVgE+icFw9ABAxkIISV5+1BB1 Die3DE1k1kuwaQGTyBAqGGeZUQXZPUGU8UcwhSf52EDTRUE+8A4GCJ155gR+3sCwiMxZCAGgPIEv pYROYABdKJgFNIarRMALDJirVMQCKAZoCtsCoIRN4BR49J4VtEUU9NUQRIAHRCgROBNQJML/YFIJ g2hDgnKAzERAAYwWcx0oCIyoYrTDYEJOBNwAVdLMaM6nwvTYaroEHHKFVyBnALxBKXhGeDgdbW6G +k0IJZZFZ0wVstTCP7iFbPBGZ1QYFk6Bbk7IWnjGB6ggzFkByGip5GUNVyTCcJBoydSBQnxpi2Qp V9BFv/ABmVZpJKAChFkDSb6AWgZp0qBA4UjBxZ1OxViDgOqXcVqDik1IN0jbvjHdELyHKrDEEHjC AOAayKDEhEgASUxIxkXBhFjoZEAYiwhBWbDJcGCoEMgFXPiDb2REwoBHK/DBqCYF+a2cx50ZFdRn oV4PCkCqEVhaxmWEeZaCqwxHFTHKFEyq/8nJxr7JXhFc61rQhBt9qqR1GqB2RhVkm0fUkjPFyF5i q3lSaIWkkG4KwVhMx60RQS1EAh8AqoV5xIWYEImIq6kSa+JQDK7xQe0lKeCEWMgUga9Ia8j4275R KEgtwAzIYx8w0VJWAah22plUwxQc3LziBV4kSoTdAMRKLLSJDIVYpre+6wxUGggEEgekV70ibMCc zgfEiQUkXhVc5r9WzwFA5YaVJyHkCYG2nMoawUpNa8NqRA3s2ofMQCTgSBza5xNg7IS4ysZKQUZA TMH1WEtY2qaYqckWXugUB7YcAMsKgXcZXiMgiMZpLMxAqK/9JhTYA89WDzpQwcAGrZJeQ/9N/B5F 0FmILWfGUmuUSB1x7QqnTkdpwCEJFkHVzmzPVMENHOvKtcRvHICzEMG2DQfZGu3ZTod47UBA4oHM vu0QTIgyoiwVgEDl2q3RZOcUMG3CLCshFAgejBKEOpEHPC3hYpfhkkLOpgTuVVaQmKcUQO7pVsGB OC4cuoHw1sSlcO7qlu13oO1wFA1yuO2nwIzQZRT03qcBvW4SMk0UgMzEwKFvlALT8AHyJYu9sEn2 zVttWhpc7FuW+FyTPJ2IwscUJC/3XkEpFIWI7sWQtO9hvMWoKVzn9srnou2EQNhwtC3PYK2p9S8V sOP4Ws9gEulfrI2QUFhYyEXVcEBqnID/yRDBDtDF06gN2NXmonyGRCALHtDNVsRBKbCwWOCamEau 32ABBqQXCzeHBADq3pFwHLTayR6H0Tpv2K0N2ZAIipCcwnkIkX5cZGlw4gwmYEoWB+TPIBGCQGha +SyADGVWZaiAfRiPdGTfAlARDrhKCDVannzbGFfBQ2QoDvCJOghiJ1WGDcjrZn7OAUBd2OVIcE6E 9szY8eInYfbh8dQEJCdPyB1vFIyHa2Xx4hiPv1bBG4CnGWUEYBEBGkxtJisOCexlqhaBwcpDNRnV K8NyQFZBLNMykH6Wy0zcfaaWXJry0dBOdl3BWNiyJmzGpvgBoEYBHxgzILjG+InyRkTP/yf3crbU gA9NVRUoQGHOQ1oVQDd78zerMl1+8zgXg2ug1mo9QAQ25jSfsg8tIV3d1g/xMjszzkvI1TCPU4w6 wjrTM/Yk4Ate1SLYkPP1cwSlETMVkTSfEQoUJ6KpckHvzyIwRUwaExhFEaLNM0Qn0DmkQyU1iysx 9C+1n0ZbUQ2AAAa8kAWowEef0Te+kRgJEGqSdA7NDj2O4wmggEKTT0uq4wGMhhXPNBbJIyM4Iga4 o04nTk8iDFPYAAyQZ1DTEZX4kiBtJAzkNPzI0iFKEUXiND5DtSHxEk58DzAZ9R4itYyENS01EyUJ U0J+9VWF9TLVEjvCU1GdyiDuACXSI64sghJpXORbW9ZNPRQ9BpQzZWNKydM0VUU1UQB38JM/6VFA gZIKTCI+AnahJSMMPFQ6BaMeKUk3k2M88SEFvHLBjUHB5ZM18aECKBPC+JMnidFaYxRBnYACSNNl mx8+laEhQpQn6lGeiZGHzfWSrFo7kbM3f89FLclaA7cHVBQ7mRRBPQAmbiNuxyBq2xROaXcaClV3 d7eNancfGhUqnrV1m/d5o3d6q/d6szclBAEAOw== ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/RDFlinks3.gif R0lGODlhWAIOAeYAAAAAAP///62trf8AAGZmZv9mZkFKSt7e3u1KSikpKf+trdomJpmZmdbW1u/v 7/+ZmRkZGcXFxWFaWoSEhP/e3v8ZGf/MzP9aWjo6Ov+EhBAQEE9cXPf39/9CQr29vf+9vf8QEHt7 e6WlpYyMjObm5v/v78zMzFJSUrW1tf97ewgICP+lpTMzM/86Ov9SUv/m5v9mZiEhIf8ICEJCQv/W 1v+1tf+MjHNzc5mZmf/39/8zM/8hIf/Fxf9zc/+Zmf8pKbSUlP9KSkk5OWZmZmZmZpKTk0pKSlpa WnBubgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5 BAQUAP8ALAAAAABYAg4BAAf/gAGCg4SFhoeIiYqLjI2Oj5CRkpOUlZaXmJmam5ydnp+goaKjpKWm p6ipqqusra6vsLGys7S1tre4ubq7vL2+v5gcHCQkBw3HyMkNByQOHMDQ0dLTug4OByYeHiIM3d4M AtrL1tTll9cRIiMhBEdHRkYzJywYJ/b39xj1M/DuSCFFBJgg8cycwYMIExIahoLBhBvv4MEj0I5A iIsXJUhod4KfPAk3JjDw4ACXsIUFFR5y0EDEBCQd5VkcwQBFhAbNTioS5oBEgwgNHxKIeeTGCAEH UqpcyrSpKg4mGISQMGPGESQiPTAr+YhDzwYoiryMiOToAVkkNEwQRIIAAAAm/wyhaGCwZYgjMkMw iEBw1LAIUocaITBBBF2niBMrrhShCAGrZbUq7XRNwIShJ24wOMyKBIAbgpAAOEHgLKEIAARMa8AA iZGrI/jGIuFhhOAbhhfr3q2bhIAbVm+gMP20JcwZIVBwReUZdAAILBB5ABABGAcUN4ycQIJ0V0vB ySfzHk8emgMR746IIC6rwYiOBDxscqCcRASlHqo7ABCCBAoNCdgUAFiCeBACABPYJB8h9JU0XAD+ sTcIB9qIp4kDAjx2wmbSNFBER0igYGF5JJYYiwePHSHAcrgcwEA8IXBWyXQ3aECdIAxA8FaAABTB wFtvqRDACQCUBORbMwCwoP8gIwBADH9NIkkCISPoCAAEInQSARLyrHeQix2FEJeJZJaZCgciVMWA hLyYMAEGRyw5CWoxgFPSj0eggMIRNk7gH4ACEhiAgQgOF8MRhLAwA4QAxBBDESg0mcAgEwAQIgpu ZYmJAwxUNQKbBzUwAT+ammnqqZtwUIRVKJSDJjyqzfnZhBogOohoIQgCAQbS3RgAEhpw1QAAWXqm wpgBoFasCgwQEgIEIzriwKjxLYZCRwxEi+q23B6SpgTIGoQCPHI6glqzgpjgqyDDOgcdIigoyW5q gkygQkmeEVBIAogKAABOxPgHFyUcvImEjItF8FgR3Tbs8GnaVbeUAHBO+Yj/soM0KWNzukZ3SLxL JmCEICKzxV8hM2gQwA1HHjnCJAxggASoupmAV6wP52xqCBjg3NQELKDbCMaCFPEvIRw/57Fc8jKp AgfDxupZroTMEMPKn2F00QThNmKCdl2T6IF2NOtstmImYEAAi0418BrbiBAdgLpyttsxvE0z6tDT JiOxr77+wh1JESyUaioDhZ+tuG4CJODzYm8ifIjcHMQw8q0nK42IvxILMgMLhw7iGQTExdsqCSr4 PYgIpEtrj8XbNgCntovXTk3k5QnAQrmGyB1AvDOIgJ6OVL+brgAFqStBdwGI8Fbnxj4qwIG2BlDp CcIfqG8jB7Cw1sMEYCC4/+3kRzMq7YhFkADvpxFbSONv7W6pICpMKgiRyx3xlqYOqBBDSlM7EAA0 EAKlMCAGbyGgI0yQAKE9bAQsKFv5JqiL85GJgewThANk07vDRMA0EUDWATqXrvsIggOzEh2CAjDC EUXAhI1oQAxadTYRsGB8FMxhLXSHvoQlQIKhMNrGMnchFjxOZ6vqoQ6XqIruSa5EnUrFiwBQPZNR TRMneJntbrA9JnoxFhvalgS0aIoiqGBthSABBMiICQacYBECkAAScNgINEngiqsjgEb2WIQn2mIG NPyiIFcxLqYApBIkwADsEOIAFvhREAKEwCIlIYEdTUZ/LXuLc3QRAQwocf+QoNSEEUiYEADwqhIP UUkqFaEBI+iEEvl65SDcQhBheOVAhsOFBHIZyl56IgJvZAo5EDkDOkbDCGFjEAC6WIlhsZEQbhGP PnghgCr68pqbCMEzUaWihHxNETdQQZCC6YARJEAFRyClCZAQAxVgoAjPOIE4AaAC0MRgUYJwC9z0 lxIUzEAFiRtEAnYJAYaRIATnNEIuG0AAFUDAT4NwwENNIE9A1nEGk8SmRithhEc2wgPrO0IEBXGA Z8VgBFzhgAZUd0LErfQsDmgggxLAsACoKgExmAAHWLA9CWAApKBhgQQuUYRNSqMvOGKmIaYIASOs pZEA4AcCheY8kRmBBVT/tF6SRNasosyySIb43CBYxgIjYCCrgtCABjCg0Ji28qpE9FdTjdAo0+zH UfzQUQYLcYK9bvSvjHBAMS3hLxYkAKPJ0oA7zzqDZ3AAA98LgAPOSg+10gV0hIhXdR5rSgysNaqe 62yu3HkJFAyVGiJIgKZCENlEzC+f65LnlDigAnxCEgAw7REi3LJU3f4OAEKLl6YgoAKLVWo5tJSs BhrLrlZqUAUqWJBEL7cIzQD2upE4gCsJi1aSJcBiqGntWH3lgBhEx1+cOcHVAnAgiQl2NIKgK86W ewnZ6em++M2vfvfL3/7697/5FQ0AVLvLReynixowqmeaRSEWOU8+B1jh/yHckgAWWJgFOuriEU45 iI6kdWkHWtEgIlCS6cjIaFPaTxX/2YgRiBe7MEaE2y7hL5zRjRAaOcRKCWFDYShQsipYi0qNGuHL /TMl9LUECWKwEYo4+clQjrKUp0zlKlvZyWd9CwGMYuBlpotehNBAMG06PQwk4HkslLAh3AIBR8Ug ATfwWQwgUJU6q/UZSYbQmXfVx/EqBTWqOXDVVMYI68b40IggwXYr4a8lNSmjhlAXLwVxBAgIAr0D AvMgVGBkQqfVtpQAZjkYcEa6iECphhD0bx+nAY9FQEcAYseNIvxi2O4EumrNNQQSUJI8S/ZZQDpB SYikFHU1S9We87Qi+v+K6GYXQrDGhGPeRAPpQkzniAW60VUFYbpCODcAKQszqCeRoXI0AFkmGHeq vZzmXGpAX5XDQAMKMp3q0Hq3YE1EyRCR52G6yC1+Oy4h6i1ZdiebERxArLMXHoA8cXdJP2KPVwwx rFymFAIEQKEWo1YITh98EL6eBGsVcgJSPtvgMRjz3OglaWfNWs2F0KcigGVALeb5RyxKgKXV5TMk 3KvgzAw3HK3J8EMXAY+SaPQgOD4Ith4C44SYQLBC81DcDgICp/1yp8V9iRMkkxojMOq6u/gjlELF USVxwFoJQoIoQVjNr5R5IoY1g3mjKXN5PoAKTpAUCkk4ZffhwI+cg2z/cCsbEeop+sIPwFxKKH0Q M4BAXATvPkNUSlMR0EDWTQBd6gbgR9ka0JmDKfRPW+KbCmnkI/ejcrcAKQHIcl6QOA3cTF9xV4PQ nzFFYCMgdREAS/td799ygoIc4MxAkkBBVJwoACzCA55U/MIJUFNyAyCQLDwzdFPYP2bqb/uDhXzt CSGa7bfzcmclBPAtkXiVvCgRHCCAA+d2lyOaACJr+pVq2hJIi+QRfZxyBCFAQmWRRgxwFaTEAdWE BOESf4YzAiyFCBiAfdJ3aAcgPpRAUQiDJtvRORxgBM+EIt1UCBLwc4WgMArFARBANROQdQEgAbXm CB6gbgiRReSDBKhW/4ExNgFEBwspRwgYpEzYdgk75VflMFlD6DAjQIM6GGMzUH2vsEHtxSBqJQIv lFq85gkCiBjHR4EPwwBZ2IQLRwIBEguoQURLh1VAEn6cMAEq1xQNIFM6AzTVJoYwFodeuAoCYHJL JwIoUIeWMCrR9iUsgHTc8hiDaId/FYdJqBghwIaK4QAdAUQkkjY5qIjN1gDeQx4ccATCRh6EM39l QjiNiImHJolHkIgHkTaGuBtuU3Jm4k9HAIim2GxvMmlLEQIBZSIioDYelRg2Y1G1aIfpdgK/WA5j g0ZmUjBq83VO4QF4AYXDaIcjIDOUCA3AJIyoUk7yUIoH8SozEHrTWP+L04IBN3CMvRABGyaKqPIq kIWO0dAAPHMCeTiOmEgCb5JO1CAA8SCOOmMCj7gh18gLrNEREwCP9tiEnCIP+ecL8ggP9ZgzCqgh fQYNUPEeM3ADRpiQ0yhSr+EluOAhBumMinMdIaAdBACSucAagjEBG8mR4xgCIoAmKXKQnyQKUogX IfCStsMawEEaI+ABtFgKHHAAKHAZJ2AEMjmQMDmOhmZTKBACSUkAsaGKmuAb7PAaI0CSX9QSl6Ed /7AXSBUKw+ABRUUA8UAYKtmUbIkIT4k0liEB2mEUAtAAVtkIDhAVXzkYLnmXX1SUAhB27yATIQEO IZQTslQItnQNJhD/AQLgEDcgAURBl0nRlpZZXezIIF4pGK9RmDVxE3ZpDaJpDT7RAB7wmA5xHDKR IJVZgcPQAAJwdEigEUlZFUlZVvjQEbhZFdpxBASAFTWBEzd5mW35lnh5AB7AADfARZjBVhLxnLZJ GlsmkyZwAH4pfV5BDMagDMjADDlBnOBZCcZpCaNZnsMUnuiZnqQwnurZnu7ZC+z5nvI5n7MQn/R5 n/iZCvaZn/wpDQpwAQAaoAI6oARaoAZ6oAiaoAq6oAzaoBfAA5ywn/05ob7QAwXwARiaoRq6oRza oR76oSAaoiI6oiRKoi5gAxGamRS6orzQAyuQQzaAopsgoSxao7XQ/wMPkEMZIKOaQKM2+qOwgKM6 yqOZ4KNAeqSrIKQUtKMpiqROSgtKOkFMOqMqqgjjUieX0Isx4I1Pyp9RWj5T2qNVigjqAiBjugjx smsR2aUT+qWQYAEWEAk88AKGAKc5YAg0wAN6uqd3igglwANxWqd7uqeF8AI8UAKVEKZFeqaW5ySY oD9s+qRu2ggK8AMDMAA7QKSKYAMDkAKEsAKWOgAV4KmEoAOXeqoDQAOHwAM6IAOXugMZUAgggKqX iqgBUAIucKkg0AN9GgmKiglGOggH4BbVqRTWiQhFSRxFmSQHAFOtyUIlUZQj0qzPZhrEQAjPWgjM EKkMN6mLoAADEP8EK7ACBTAAsboINHCp5xoAPDAAHTCuFzAAPFoCIHAB43qvtkoI7foDDwCvnToI NCADLnqvK3CnOWCqGbACD7ADQTAJv3oJwZpmRzImYPgWEsAeByABVpI4Zwgkn+crtFYEOoKlEcVO O0JGB9IAROJl6nMl4pVaxMeU3BpK3poIOeCuhNADIJCviNACO2Cug+ACFUAILrADg1ADqcoIOmC0 hJACSRsANiADPDsIDzAAgXqrFfCivqqpEMuoETUq/AFRbnECExACGiBJJNVmrAU01IGPZzYBLyMq FhNhsca20pUACTYBYLtaA0a2+oMEMvMm63I9eou31+gAYqG3irv/uIzbuI77uJAbuZI7uZRbuZZ7 uZibuUVwndhVs36aAao6CCtgtYqQAQPwAUB7qzJApO0aqA8gA41gAx9QCBQgr4LQA0xrCB2gA4Vw AR0gCQ9rCRFbL84nCKhBRgegeU6zSGJGacVrCBH2XSf0bfESLhZ2W5uEVbGyH6ozLNW3U56XCAw0 AuRbvuZ7vuibvuq7vuzbvu77vvAbv/I7v/QLe6bouY4QBDvQq3U6AA9QAqlbuzVACC8wAAogCEHQ ATmgABkAoY9Qu1r7AwVQAg+QAVcbAOFaCD3wA8DLtcLrtS5nMWZbCDXyDOcJNa12PwBgIRGGRzqn QctRlHh7W8RR/3oBUFtFc3ikFm0R4IJseQRc2a05OgkM3AItELqI8AMtEAC1e65I68CCAMCkugNU fKo6QKeNoLOIWgIyoAMVcKpB0Kc/8Ls5OwBY/AjBK54gPAgHYjGYRQg/whkMIAF4iyQqzMIwlwD2 IwinhrfiZD9t3HTK5nFDMkDQdch5I749yJFed79DLAkX8MVBgMSG4LQUwMSpW7UXDMAXEAAv0MUf QAEU8AEVoANTewhIO8TtGgQWIMoKAAJhHAAZIAOXHMU/e8aOkMaUMLzs5agB4CiF8CNxMVnANwMu uVZ3fAj3JlB7TCSHNYAYdluw41mEQMj/9JzwYIyMYDPE2ciYiP+/ipADOUABHQACtVwIFuC/gtDE gqDJhMDJAZADlBwA6XrAioC061oC84y0cfoCFVABD6AAD+CzZry1TRoJgRwABGBpUTd1BxIuuFfI eNxaeszH10cI1NzL0zzIl1MjGbjICenNigjOjADAPWAIB9uwUWy77Hq675y6hyADnZwI4EqqiVDA pEoBLXCpFaAAuMu/jaDLk8DLCf14JHNKGf1l+ERsypzH9sNboqMB65XQAZDUN3w518ZjjacI3HyZ Im2HJM0IFcDBhVC1O6ADaG2pFdACJVDAAzwIbp0IMp0ITuvBhfqvAOvAvtvBBw0JVM0CKmAYEUBX C/IjMcIa4rT/1CusQfNGUk6dbQRwDKwzYNIsyNVMXUnSRx5icFwN0vb41WIY1nAdBLNLCCBQAIYA qjvwz/88ACCwA4gKAjYdAEirqhTAyi+ttYYQr/ZMCBYQBOdMzwMAoT1w0oRQAcYNCUItCbxMbaKT ZY2CM/EHJGfEAhrwDElSEEYjMS0cZp4mQPTkiY7q3CTzvAFgSqKDSVrWQ12NCNfQrPDNJtdqYDIb CfOtCNfAuZywrYxQDJAA2k0o2oKQAxWQu7JMuotQwDxaALQ8CDpA1jkgAyp9uyCAywOewEC9zgOQ 3AFwAfsbAD0wAOdsuhYe1Ha9y2ucLv6o4iISaeAwJazxDA2x/3QMYDGcEi7CQwisIQIpVgRTEhUp 8ZhwTIE7zpTtfQhR0jJwthzEVWi+7Ak4pQgCkDIDNEqtgELhiwg2zAgAroMCLggfIAM/cAEFsNPr +gCofQjsLAg0AAIyUAAF8LNvHQDgqgNwbqq6nQHGbbouAOd+XgBvXbUtAOc/IAOl7c9vXgCm2tvK feJDneKmcuSG0CQhsbhEYlvd4ORDSQlRjm/IUbZntqajMAFcuuWL0OUV+OVsfgGzStqEEAQDkOFM DAJEagEMPgAuMOeCwAMXIAMy4AJQHAAtAALx/AOzSqswXQOwXq+UTAG37gKlzddUSj6SXghNAjc/ Iuok/OSd0P/phsAyPpNwKoCQrGDqyxbEC6fqgyDOKC3rUZzh7I4I8U4I8V4C9n7v9w7U814I+y7t Ykrtnt0koIJWOT4hYUFCLOMV3JBRvhEQi1QEJMEhgxCbZ/HG2oqGGrRCJgBP2OrjSwcpklUE7LHx RRAujSFZIuDxgwDyEWWWEv9xxjsBZYPq0qfu27LckcDLZlLtVGJ1J+cuQsJtyAcARsAVLJMjCeQz 4UTdZAR8Z/U9AoBAbwE061UIRiM4x9ptbOyoHFBJ8WM0mgJSRxJ+ojECvccsJ0T0g4D0vlcQpec8 n4gINK94No8qOA8JOl8mPJ8x3A4hRqACpvHGdHcTAoBOgsD/MhCwGeozdVizGedGV4dBXJsxJaiB TC2hI8HXYVWvbyr3gy8IXOfm9aoxLJa/2c5xIBqwGSYA2LOFVvHCgMfAMpoidEYTgx2G7pagAMGe CzzA6I7Q+6VQ96dy94+Q9xcU8I3iKBWGfELzxpUGx0cD7oMwHQvifxE1fgBFCEawx8lC2Yawa4Vm gqjRKhVHCPqjGjPIIhjA0CE2Yu6DQrbyIR23dZVypnOfCQPAu7yw042wAsltqoAQIDhIWGh4iBjQ 85DY6PgIGSk5SSmYYVPZeMOQ2en5CdpoctQ4AhCTkAABoDLSQMgSIxhDQMjh4RBwA0AyaALASehg IkAAMCKo/3IyyAERUhgja5j6eAAgInijwRHAAJA7iAIgUHjgUaQBIRjCO9gAHMABQGrbgDIBYCRo BHEE/3jCRChHIDoMPNgoCAhIAwwKovEBYaMeKyRavIgxwCWJN7Bl/AiyUYQjrwKMKtVO0AwNEQrF CkACwLNDu8AFiHBtEIMEGlj1LJJsmaB3QGFJK4TkaCMWMwRBqBXAH7dBOMkFOHBiFQAIKhKsS2kS njx6N2do7Sn0BABWZBsFDFkw5EGFDC/INdTDRokXfPv6/Qs4sGDBJXLkKLF3sOLFjBs3zstxwoHJ lCtbvow5s+bNnDt7/mxZBCsCDUaiPDDIAU/Ug17GnGloV/8vQTg9ejsxQgAJokEHWUNGKIFSnWAJ eTAy2xsHnC2jAphKe1wABxCcMRC48uvssJzGDlXBYgKDVxr0BTACoIGAf24FWrRQoEDEuBoLBPgQ nwchGy5yCCqAiQIupGCBITwU4IIChNBwAQUlZODCCiUMQsEF+g1SQAaC0DXIBym40ENEAazgwgAV DBiADfZRyJ8NFBDywQUl0PChgpPY0IILQezIY48+/ghkkEF28MMPHbigo5BKLslkk0zqYONBIcRw QpVWXollllpuyWWXXn4JZphYYrAWACyIABUiprAmyAEqYGCUIAm0dQABqMlGVU4caCDUUAAUpQwh tBQCwXD/gjigwg2HYKDCVDEVcYM6gqy3XQCikYNPpSxIys52v3Q3zz4aFKKCedk5V1Iib0lUwAAD yDBAASAEIUgLMmTwKqx2CXLBAP4FMIAOrbo6gIaC5NCrDLDqQIMgNRS7g7ImFhgADwMwMkiwGy4U QAkd5AqrfbgSa9C3gzwAq6syYBvAA7GCkO6ukxhGb7323otvvvoGYIGrO7Swgr4CD0xwwQVftAkH Ci/McMMOPwxxxBJPTHHFFjcsTgwjDNOWIWsWUgQAE7QmTQgqpGpML3hGhw0HgQ7iD6B9BmByqiGz oCZ7XwWzD0+KHqpBmg6wIN3KAWSsnS9ihRrAqYKYItSp/9R51Z5ENlxrGA87DOCCICXu8IFh7mJi yNYt0HBYDwOIqHbAOfBQQQuCfOBqCoVZsMMP/llb0SD0cVgiD4aVkMIA+uUgQxCGBRCEDIL068IL ObzQK7XuVhB2DmpfeNcnNGSQbgcvdk56Jx2VjrpFJkwAzkmJ4MPmIDMAwJoqhyaQ6ARqBWN0bV8d McENCaw1cgAAzKyaCkjoXh3VhxiTQAjBD//zIOsB4J4g3swwwZRrkdOABjFMoPtaJYP1aTxMi4NB 97Pno9KogohT/SGrHlSBvNUOQCvjA0QZgAtU4BA7AEGzBqEDWiGuB4R4ln7o1rVBWCsifCPE37hl g74J4v8FAyCbDCLIOMcFoAADJEQFVuQuDXIwBamTRA5qkIIdxXAAF/hVC2+oCZ7hcIeecF3OYjcU DTQlAC8RBAmOoAIzeUQXYPFdPELQk35EYE69EcYNkogBE2DAUIQQAHrWYgQUGEIeOCuEAMgEAAKE zAOC8AAaMSCCEagANZ1SGqjIspO1zAAFEogBN5xGMwA0x37ZCwUNBqBBQcjAIR0Q4SBWMIADWlBu hOjBAPslIkGUYAAspBsAAyADBlbQbw7hkCYt8IAetKCDigRh4wSxAxDyagf+cRe1AsBBBvLQEC94 QAFacIEMWMA/CljRLo+ZDR0ic5mi6FghHADEQZCANST/qNR0gAhNWxwAOtecigNmcwBrHmo21XwE NG1SiJgAp40eCWcAPFAcd7aJG9lkxgHAcc9ygIMD1LSmPAmJkGfVoBD06QC3BiFQQ9BnELjKgQIM R4gccO0+AxgoIWQgt1EK4oLH6kG6/sVKULrScRI15n8GMCFbDmKFy+SBDXZ0gRWMjpk01YUya4pT kzgzp3Kp4yDwYRWYsKCMOL1fKKz1yUUKopGFeKgkSVmIHiyEbpkMgEQZSDeL+k2UiLRgKblVuAzw oFkc9OBIN6q/AIKglgO4JUt3WAIF9OBIIZoQT2m6ibvy1Id6BYn36jed2UUjBiqIQTSXadRQgECX G+Tf/4YG8IJKHtSEOyhEBwyySbI9pKIU1WwAKPA/fnX1WA3ZllVpSAhrkW2iGxLhBX5QiB9EUKWN ZWELafAAHbngAU/t6zLz6lua8jW4FxFBAtZpCxGcIAEnYAA6a5pYUGzuWEFgbYkUNzdOEnAAjHWX jVwggwPmoAUgmBDdZHAhb+1gQiX44CDUFkEOVcAhuNRBSBM3iFcG4FmavVrfaItL7ZLubTHsQAEU EFni1hS4Cj7mcBsM4ZBE9xPjHUALOhA3pYbwB/NdJX0z0IFfVWAHeeuAfRn7gq1dFgShpaitVoze 9w7ASLHUsLlGNIAddMBWLLZtiQwcgBuPMFgmjtW52v+6Uu7e5QUKuMCObFDVCP/2plJG3YOrjOWD TJjCD+Cw3XSwK4OWQFYdYNcI17rRIFDABSBwgVY3mIEC9kCSVK0Bh3swU0E8gMQZyAGYeQVbQSiA vB2wwQuCsCIasJmBBQi0IFZg0CC8WQE7kGSKPXuRz12gAxd4QJ6zjEwGg7p0phm1qUGxZYwYNBIL nURWT12JEnygBy7oQAoUYFdYh5rKusZIAxJAAAJIYNjELraxj43sZCt72cxutrOfDe1oSzvaCUiV XFYNiVZL4tW9dgQFfMlpG9yy27smt1xMEIF0q3vd7G63u98N73jLe970rre9743vfDeAmyGxbyS0 VYn/Z33S3NWCkIFXkGCCT1nhDG+4rlMZCchUggZzVngJVjDXAQnO4cwUNcc/DvKQixy3m+70p0W+ Q4+jfOUsbzmEc/ABELugADVIuMtTzuub63znPC8dBZrcgSAIs+e7VDnRj470pGfCAvwJQkxPrvTS GT3qVK860ktQAwTZugY2tHrqpu71sIv949/e9G7HPXbUgT3tbG97lnNggRRsmiI2d7vUc273vMeD YXpHZlwLcCSxdr3vpFs74VvOgW+awAMiKEIRuhcCJARbSxgYKgswoKVgEyAE0nO8CDxgAhI4gN+H n7iKDOzp0t/Q8KonOAdIEAEBMGACSDiCEYwwAyOc/+AIBLhB9ybgeBSgwAOgmUwEhM+Ax0tP8kc4 Ae5vz3vgCyAC22z9IV4YwyD0oAa5tr7a8e79UXPAHrOXwPNPIIHliSACDQgn6UOS+AOURgS0H/bz jxACBqBg34enwAoAH0xoF37fN4CwdgAowAAEcHu6RwATgAKh91w59XomgAIjUHvOZwRqhAKHVXUu BVMKAHUFeHeR0AAEAGygMBLRYwgZuEMowALW5nIHOAG2p3sdYQLVd2okQAwh0Hy7NwIbGHVYB3hB kAIbJ4JFB36CwAHDc4KeQAIaoAEJUDyE0BU75A2DtHLqgQTOdwIOyH8cZw9F0INIIAAw2HK4pVu8 df+EHZeEYbFEnrAeWEgIEAAnOOQNhfRxJIACW5iBDBAB7xdyHGACCciAAsCBDEdgtdYDuLaGC5aE JCAaDJBPvnGIkwEdB4APG8gNkxgAdNgmEWhEOKhNoAgTlcgNooGHiDCJolgO4nQonPiJMAGIGLE6 RzADEjAeUdcACTgD+JeK5MZkBfBkUdaIbPgIWkE884NGM8BGhDABw3MKzyAPZQIAKOAAMjEIEDAD EUA0iVIpRUA0W4EE4OAABNATyhA7DeAPAJAAb9gNwwMBRYCK1SAyDLAKMaBMKLCMhYQC75MP7jEW xlAUINEAIeB8E+ABs4h0tzABtxcCvzhqnwN4BZD/esV4V6yXgPMwAQIhGu0zAUQjRiqhPOSjFiMz AmrRgNs0AYMUA9XRhVeUAOBgDBJAPv4AFWbheyFQHeAkPtJTkoOABMdDe4WCPfQYhdJDNM1oKQDA PRNAJs0hGk15RTGQC3uiAcAjhxKBiQcJkWK3OronGaOGdT0gQ1xnkb7FegHwDs3oAHxCCFvEDb8Q VAFwAtsQAOvBgcMzkA2gAs+gToRgMoJYje7wDzPAAtARMqjxC+t0AKvQlb7BjrOxJ+bRlvWzXIKA AUMUHeTgMs6DEShAADMQAlmpdyYQAhhAACEJYd82kTbQW2epV2kJT1aBE4UETwLxeoRAAuiRC3eI /wiFUghH4BW5KU1BWU3HgwuHkgvX6I4qwAkTYJc/VZSOYA2wEQC2czTfQAg4gRqV4gDrARTyMDMI wQFFMAPNRYqExwEiYItFkJ405YGIhnCwCWGyKR0BkCmEYA0DuYcYoAFJZJe+eQie6Iy0Qxs3sBJJ ZKD4wAozUASsAU9QKKFoQUTDMY/UKTLBQTW7MKH/+Q9bCQE9sTQ79QnliQESQJrhZwIEgAEjoJBw JVecVoSDR5/EZZ9WYTRXkaEBYAwxgAFI4AFqwQ0CaggEKp29gA90mJpByRorGo45sR5MMQNTep4j IxyFcKGNYA1TeJ1UYwxUOqW6J0YRoALgcQIiEP+J6kOincAAqGmGa1gnGFAEL1o6JOd0alijWHaj k2KgSsNGODGQPPoc3TCdRUpUgoAE6mAN9ZOYDqCUByAAPPF6g3kISCA/gxAyj9kmOyonVKMch7CE LGAT1nBHB2ECuvemFqmOGKCULQRz2UdzdZenUranMIGNQKmd+GATS9gohAqRhMUmzUAK61FIsyN6 nBoAIdMLMaCZgSVG8NSqs6OpOsql1KCjyOVGJCAP9YMPpQoKHBACLDCXs3o0LDCOqON/ThYENsA5 5ApqtcpEE9AABXmr73AC8yoARKMBvTmd42cTuJMAZegBLKAB3akBLGACDXAca/EKEgAM+OqWdzn/ D+w3sAWrEg8bAWpRqImwpRo6CMYgrw0gAiowREagAWVoArvwJ2oKCgeAmu9Jnw6ABAh7F0xXawUg U+6qa/a5RBzgsGvRl4RgCmViBA4rECHTHO8AG+zIoOw4SCIgomYSlJy5jnpkE/ZYJgmQPQ6gsfmA DymqnwBQPyGaGsZQJicADr9WJs6QRupjHp3gAe2os4iAAgGbEWOpIxlglnO7s21IAg9aDgzAAOJ0 AIKLGuWJGg1QBLPhAEWQPQxADoWrmtKUfCVxHe5QuWPUeH9oCIrbEgewuObkuISApuVQBLloCyhQ BJwrAFZRBK1KCcYFtnPbACwQqKHAmqj3mnx7/2ppybuGEKmHSAk2MXp3UbyJVwmJ5wDLu7zfSrx0 WgkkwAJt2AhvkwFzJyG/S3C+y3GYSD7fC77yWlO/lqqVALWvED7U+wnhgw0+JQkjELV6pL6GgA6o 4UQWcQAsMLuJcHFzFUxGqL3bO78NJw7UaMA5QVMzMK6f4JvpExLpUwwwawj4wHuaNztpQgmwcxUE MK1wiwHQ+xAPsGkUGYIB3G3c63D8tBkgTDrsKRG++Q4DnAkOnAn4wG+m0MEe06chQQDIdX01IHN1 ZcIgh8Lk+lxGsL+QQAJluJQCEcNqqRuEQAzx4AEJeQjE8Kbf6cTwoB7cpB7JOQhVLJ3YJLblIP8A eCjGxBcAH/OdvcABTAyp5TsJDTAD7+d/AChuQ4xyBOCOejwC2zgU45m8ZptGmaqWf0LIBAAOsxMB WgEBOtQAaDQP6ASda4EB68EJu8AaAhADZaIBU9gTY/xM7OEAP2sm2VMdDksKHwNP2HCNR6Cy88DC qoKFLqUjB1bCetxwEfB5VezLvwzMwSzMw0zMxWzMx4zMyazMy8zMw7yOSAwpoDA7I8B4LJBEWwwe n2cKdYhET1HF6BGSbiKuHsAAUTgI7HADHoACRpBEnFBH4nAEw7ewzYhu0slvJrMdZPK6Z9SnZEIA oLfGBloV05FECuwBQXm7NTwBQrgjGRA2unz/c2I4bRNN0RVt0ReN0c1GAE+6edZZCfCkmktYlO+Q ANAhDmLkD0jwllQjAZ6JKNgQE1y6O4HUC6dZCG07wQCQmVQ6PNkjGrHDAvRgzTbxMQN9jYc5CNbK wARAa3gK0U/dc+xwBAIxAh5NCdpQCDh8yFzaiSqtFpUiGstKANM0GSRARXhpHPDgvkY0iExTCPig Ah2aRlPR0mQ9GYnKDVc6CEUtHdeIwTOgAqFQBEhAo1Bt2C4nxoKAJp+g18Sxxcp0pUKa1tZ4wGsx KsaATk/sU6MAjUmEwaLMDKLxM9B4wKjR2AFtv30NACotO5fqCadz2LF9dCQwAxKcCKftq4cM/9lw ohaFAE8RcI1NCb6cEJTolD51FD60gJDWsFP5WQjmmAvREL7kkwunzdfkcI2sHT+hMAPCK9vfLXJq 5AlQlNUjfQyFoAHPoBbo5A3Rrd2FIA6xA0/u3A5mwU1uXaDRxA650Ee3rRTXPR2rTQiAlAkCIMjg jeAoF8mzLMWk3MlbHJOO7RxTuIRDZKls4gDjMx1BQwjoQd/L6pkhIwGHoKuGwBR8Ope2KCf/LdCq /d4EXgmAnOAzznIh8NmTYAx8XASqYN4QkADyaAw/4w8qIAGNNzzUBIUTYOQWS6hnygBmodbt4A1F zgDrSA8oEFT4MAJoiqY7Lkiys9oiwABqYf8V1t3i2C3grf0JN3DjNO7mHDcDPjwJlSwTDQwM7AAA GrBOdekBncyUhXQAVTsD1iYCfn4C881Es2Eya5EAbUo1ofwVBvwmrQquImq3syApgoAPr9DKAY7B ROMJbcrgb07qoDY0ci4JgtgLw8ANgpgLOohOvW0SrngVoYcINygItq6D0KGD1OQeDZA9OmgCwz7s pDgMQDSvumkC9GQCrZOOOWwIO+HdpU7tsOYAM/DeEjaoY3ea017t325qCkjrFoEeo95yXIu24K7u DAeOMlwJBOBHYScCLGDV627vutYAtyfHxUgCEjAD0H7vAR9hbYoE3h5+JHCaqC7wC29qDuD/lCEw 7gf/8BHP8BWPZQ4QAjNwA0lMeCmLATdA8RYv8lXWuM7nXN63ngcZ8iPP8lXmAUeAmgJg7km3h704 uS2P871WuCcwA6lp2wt50OcpiTlP9Aq387uHulUnshJQJUlf9E9PcEuMoCdwA0BIdOZgkEZwA4YI 9V3/cRFQBOZ3BEggAl8ocuMnArVXtKvr9W2PcoMYAre3eWX/8yQvsmx+e5uw7G7P9y2nhyNwAzwP y0re7FnmAOoB+LZoBEiQGyvf94//cQ4QAQxg4zxftCGw5cRX96UDTYxX1RIgBAawAb33uo4P+afP ctBUgWxue1N6Aps3AgwgAihAfcV7EQpz/wAUKOZVTQDOl3u8h/lAsAAIMHCob/xWl3ilIQBVzXwY iHs0eARjz3nTfwOxL7iAfwPTHwI3EP1cmHu3t3sEgASYv34NoK2GICCFJqvHz/5jl3i7Ma/pJnuC K7iQp/3SQ/+CO30RkLDmf/6VAAgWBS0FPAGHiImKi4yNjo+QkZKTlJWWl5iZmpucnZ6foKGio6Sl pqeHLzYdQSs5qLCxsrO0tba3uLm6u7yVNS4dKRS9xMXGx8jJysvMzYg0KS0XH87V1tfY2drb3Jo5 D6w2Jd3k5ebn6Onqlh+DPRbr8fLz9PX2saodF670OSk1yFZkaFQihSFO4+4pXMgwnoILHf8yDIv3 YkABZC0GNKIxYOAmG0EaihxJMhuNHoSoqavYA1kQGY5evNoEQkfJmzhzFivxIEiHBwnNsXQJ01SF FjqTKl0qi8eFFu+ulbDRosIFgKkGtDxEQceFmS9SVPghLhGPAmNtvEBko8LaQwpcVPg5MwDERCt+ TAwCIoeNHzr4BaDwY0UiCxcqBMGKiOePChnGPagwQMZcppgza95EIUMHFwqc5cioQ8eOjlm3WpAR 5C0PEDJKD9ALd8AO2RUmPtDxNsVs2UFm/gCRyMYAeAH4doitY0CLcRw9BshgW8cPi4gID5CtI4cC HTJiu9hMvrx5R3EjTkxmfH2BAWuH1hj/cAFRjh0/3q4eH0Bx9gH8JULBAA8gMl+BAehQQSIPDEDD IS4499YHWgXAkQ2H8IBabaEF4AIID1qIXX9InWfiieZZgFIhyfimElzjVPQPCFtlOMCLATRYQg4g tIYIDzgeYkFHQdWAnIIMOnhIEEoi0gNxA2IYQAE2JXJXCQNIeUgKHRxyFIpghokZT58BZQwFlP3g wgpvBfCCDKcRlwh1QQUwZGjGDdBBDwcxcsEAPWaA3CFIItJgiC8pooCDFUn52AWQQroDcfMNqsiX YmaqKU41uBNiLxT0IMMApBYQ46gFyFAfIn/WeSFcHZA6QAUdLmLDaaS2cOSChjbJlyLz/32ApZQg yCorCAs2aGkimG7q7LMLdaZPrbnk8EoONNjwZ0sVXdSgYYcY16adAwCUUAk1pHDdp/alsoKoP7xS 6CGHLlkUIou+0OghP3RprbUGDtDnIQk1C+3BCMeTwwoQqZXLCiDUiSSWWy030Z1zDjCODhc9Q6Ai L4AAbrhKdsDrIT342uQhiQ2WJcpyGljgsIlQeQgIJSas887nCALVwLMMeEFCFtDoZoUBYNnlIVUh N9+qvmHlzwDrIdLCDiG+0EG8ARjXIcRNRqjDg998/KqILrw1X8cXyHAQhR798APPdNfNjSpBtFKX LIvKAEKxzx3dcQCLpnAIDZT9rWdCOf9E+HexCGYAwlva/R3eQS809zfHxx0S65+Kd3x2jqQq7sJM JWRkOiK+4Wz367A7U8NTGbALCw2egYZ6EAgekoEL567wWZCEFxDMoMK3yRMwD4w7VQfi8BDERCnU F9cFfUaZyAueFcDYId4FcQG1z0sX+/noEwONPsSbN2Dv6ccvPzklrOBT8+eVYAF1y87v///WOEsH CtA/pqyAVKsCoAIX2Ix86E4zL3hA+xhIwQr24iHqsaAGN8jBZ3CpABPsoAhHeL7l8a5OJEyhCut2 lhakoIArjKEMNcW9IIBmhjjMYabSY4Oq6fCHQMTMSQYItCAa8YgkIdMJkcjEJjKkHXv/sp0Tp0jF c0jrKlXMohbJwbAgOGyLYAxjM1RERDGa8Yw7sYEL1rQ3NLrxjbL4AERqB8c62tEUFEiB+L53xz76 MRMLY964/kjIQkJCEHtCzgNgaMhG+tGBCgDBDlDoyEr+kQexGkBILMlJKlqrBC+gAA1GWQMFKEAg NrBBDwpQgBRkgDK5SoEsZznLVbYylTZYgSlrMEoaUOAFO+qkMGEHSgp8YAU2kCUrIZW3z7TAhmtk ZQF6kIFqVvMBD0glNrfJTW5as5q2LMAagcEKVojvAj2gZgYeoIAP/DKYw4xnZnLwAgsowAYZWKUL 8pa3C7QyAzZ4wApqwAMaABNgtvhk/z15cMpsKvMCzfzMNFNgAwVYQCbyzKg9XvCBB+QToj5xwTTX qQAeUACe5chBCShggRp4VJ8dYMUtV8ADSmr0ps0oAQ+Q2QNgiK+VD+AlRksCShrUIJnijOkFKLoC C7QRp1C9BbbuabzPoPMBJrVpZlbKgwekoAAg7UFQfRjVso7CnikAhguWatFBOque77rAGi9ggxqQ 1ax4pQRHtTVXCd61bsbkq0ixqtW8GrYEH0jrGjNgVwqidZw24MFTDYvTHFhAWzaM7GQriK4M2LAA D5AiZYWJrh7kjbGFFeELVsAlF/Bps6P9YwkUYDzQ/hWHl91nDz4A29i+8QM9GKCZqP9IAW0dz7d2 JJMLvghGaNhwZMgVY6gIUUQxxqUFZYmuFingDre60WeR0e4U/eFC79aRuy2An3iDWAOOmbePNNin aNcrwx7oIISEXIEOtERfGZZggL1VBA1SK4kX0OCpFLhrgk1h4FEYmMDaoEAQBtdfFVIAu5UYCib8 0pxZXaBqsyJYeAMwG1O06hM0KMB1csXfc4izwipMHXQLPADDXeIF16GrKpG1HoGiTGP0opYoPmCD AE9iBZYpAEA9szh19BTGJLyA+SYhI0woiF0U2MEkF/GebKwNhRSi8DlcMGUoV7AGSytwLkuAJRv7 OFsrqBM2EXHAIlJIJQKdSnMA+o3/GWcLfwJCZnUbQeRXZGtH95wvI3JQgQApIgMyqFNxbcCuy6LL FX6BR0dDxJMHkJUG2axBUFQxjKP2iciKsDQkUndbM//PBfhNRMpK1yAbbydPlRnZ3xARhCotggIz kYFejAUfYTcmQqSSgZZSMCpS/UDRVgJygzKAqxpPYlHzzUHVZk2qHszEOO+RAT218idSrSDLyWYM BTJJqgq8TSsdtsgrlBVtI2fAxq6moISNHADfSKQzo7LxDuB0bgswCTkLDsB9xMyI2wwmQr4MgOvs de7ODMAwiwqtMZFl5PeM44DKHmWEGJmIFMQMEr7xNAUatJUGdcACDxqQRUbZAhD8/8DTH5h4f0Dg TgrUYCw2qrEv3wMQHtUoBzKo0SPWne8K8sDRjihB0jNm4+vgaAdQPxq+HeHwKWnkZiUaErvEYpev H+IDHXgvIjwegANqqcqRMI0iPlCDutd9GG+Cbr5Ip25NBgzfvolPB3DUoGFoiMIAYllfakPyxnQA wk2P3QeyzggKWWpANga6rCvQRqkrvRFd/9NMJg5pHpje9OKiEFmERQm217kxI4KE3BNB7JfNp6Sn XxRA6M2VDQUgWKyDD8g6mpEHaQi6IFiahlTigh1M4r+Qj/zraLBJSFCnanA32HSotgivRCL0Axh9 iZBd+9BIrnRBiPUhXC8w2H++Ef89ONnZ7d6gAvmm9hWqV++lA/wtCV/hPYArimN8F5cIrIEIVpE0 MlBmjbBu/CZ9rxMEg5Yk2GdtJPJokbYIFzA3jGADHQN+4scyMmBKJKgANfAW9ZMCuKJ+7NcnFCMJ 8zFfFVEgxsFOJchLpPMpA8J/5RJ8b8EkYsVb9XJ8Blh9zNZ23CcJD/B+ECg/DBMJHPE9Q5J5zpcI LuBrZtGDiiB1mwSCYEcvZtcYxSMgNREJLeh+ksBo1acI2qMhtjMT+ucyPMgYgRcARIgI1EGA0HWA hzMAcYGFjzAajdeEscM7cdcdiBAhVfcxNtJiiSgDOKI1TQJ+iDBxFCADFFYAxKH/e8yyho1whgSD NJFAIRcwSPH1MffRAXVRL3G4gwFDh8KnIb2DbnpYhIlQGso2CelEiAvUFbHGA3AiS9ZhgZMCAi7w VXrCFvyVOnqiTKMyMhVQJQ3SSiXQLMbhQlxSgB5CH7I0HNC2fkD2eqHIhI3wc8bYAykQXJXxADMx HzsgS4oIhjroe/MBi2sxGlpRPcXSOXd4CDKQZqTzf5AADg/Ii3ZjATrAR4tgAchWAByReR3AA9ex AxlQFxUgf+GSSRXgkInQdS8QIZG2AwCpAJnUAbXiD7jiAoPodR/XfuNYCSXgGaOSfMyVIcimA73T ivR4Iz7IFeWmAxnwATJgGP0o/3FrWBGe2AhUoXYGiT4I6YiLAEypUDAl4lb60gj68lRXiQhSuZXb Y15S+XxvQU97E5aWAEq95ZXgM0hmSZaNMUigxJXj4JZcOS4cMWOLkAPGE31NSUxr1GqNoH1AdAER 8wg8ABV9qUE2AJQFGQDGxgwWoGWSOZlaJmSNsAKUmZnf2AxowYiM8AL2ZZmJ2YtPgZeOIFLNQAOl sZqsWRqiuQjf0ZqtuZnMsBummTQZ4EJ8OZrxw5B00UfcQwiAyZsL5BQZ9EYnARW0SZwMZAHR4D2N CUT14wItIBHMOUMm9EJZlAM1EFwF8JrXuUK4s08pwFtINFveCWjhaUS4AxFiNf+cHXRZtaWe69lE FLAC4hQEKXBuKQRqpoVOJ1ifYQRq+bmfTkVBiPUABfBTCgCfAjpeFoCf+0RXjZU+lqUAiuVaCrCc DxpGgSVXa5UCbbUzxqSg/HQBWMWUHdpHJZqfIUpTwIYiXMVacsUKQaiiK1pJOkVVaiVSGWBRvxSd CmNgO/VV+yRRFXWgOepbJZoBSWVV05SkBrWb1VBUO5VPYOUTSLoCH4CjS4pcJUADx4RU5ASl1BRQ NfABvsRmQkoKKrVSYupSybRKEGVO/gRQXBqjX8qcbCamK+BRXyVOPnWiYIWOsoRLArUCiqqouHd6 jmp6p7SoiopLqvRQglpO/cQ8ShTFTlnVpnsanm8qSh9wTNvkSliaTuk0TpGyqqs6V6i6Sqa6TtjU Tj3HZp96q7iaq7q6q7zaq746QoEAADs= ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/RDFlinks4.gif R0lGODlhWAJLAeYAAAAAAPf2/K2trf8AAHNzcwAAmf9mZkolJf+trXFcxf9KSkMos9bW1gAAje/v 75mZmf8pKZSF1LWs4f/W1hkZGf+ZmWFLvsXFxVpaWtXO7iwPqv8ZGXt7e//FxYFuzKOV2To6Ov9a WsW950REtBAQEP/v797e3v+EhL29vd7e8iEBpYyMjGZmZv9CQv/m5qWlpf8QEFJSUmpUwzMzM/+9 vTkbrv////+ZmfTy+nptyVI6uKuf3Yt6z01Nt83G6ubm5ikpKQgICJeK1b605f97e7W1tRoAo4SE hP9SUuXh9SEhISEIpevn98zMzGZmZkJCQv8zM/9mZv/3921axP/e3mZRwEowtf+lpZmZmf8ICP+M jFNTuv+1tdjY752S1zASqygJp//MzHVix0pKSs7I7P8hIac2a6+k3oiIz6id3Dohrw8AnWNjwWZm zFpCvOjm9kE2p1pavX1ry/86Ov9zc2syi+7u+IVzzriu45uM1jMZrPf39965wdzW8E5CQt7e9yH5 BAQUAP8ALAAAAABYAksBAAf/gDaCg4SFhoeIiYqLjI2Oj5CRkpOUlZaXmJmam5ydnp+goaKjng4/ p6g/Dnt7pK6vsJIOJk1FDw8cBCwsYxi+v8BjuwQcKw9FFwwOsczNzs/Q0dKlDBcvR7u+MTFjIGPf 309P29vDDygMP63T7O2DP00C2NvgGMS3AkXITfz9/Bf6BNw6QgBDjCffYmDgIKDJD3cQI0qcSPGZ AwYCOBhMSMBYvmQmTDwkNCvkBRQCHxTkppDAC2XuUGAY6WBFjBWHTFSE9APFPIQsVrxAt6zTRRQv VrDghiEoCp07o0qdSnXijwvYvgV90aTopj0mbBXsxRAqtBUAGAh6AgBADENH/0BUNWTixVgMR7iu a7YHo9JeLB4wCDC3sOHDiCUx+Bu0yEhYDi6oJIvCa6wHaW0wAIDzEAUghR0IIMCNgOC97vra/ebS cuLXsGNTvMBhTAwOldstxvCExQvUmIAPWoeZwZ4iAASwsrGcuRIgrIQvb978kHBODh6w6H26qgnt 3B/LHk++/KjFvVaopfjjBQsQBFBkWkFCgBIQ61CMATDDFgATILTV1gM2AMCCDS8ICIASMxxIiBIc 2BADEA5gEAQJBIjnAAckADDGBZ4IsJ1vroUm4hMY/Gbeiiy2GIlMTxDQRFU/2DTGA9c9cgR/Cwmy IwhLkTDDfyvs1xuIvtlwAf8LJJAQFAEAeIUCAPI9QQIISrCAAQAUCvIDECQ0FSCBmTDAAYovlPia aBjAN6OLcMbZogDfqHjYBbwdoWYjO5KpGQAEDHJBEJltJt8hQID2pwCDYECBIDF4SJhmQQRqg6OP cRCEeJMs+QQHZrFoQpEYHCrnqagaVsQ4pr5mAgEgrJCjIjuuZ8MDQaAGpVoXJIdIooPMMIYgewQR oQ37hUrAozYE4acgQbxQyQUH4ZjqC6ymqu22EzHATRHmmcDCDNJCsqNZTzA7SHFK+oqoojag9RBy b1pZCGY/bEaBEvzyCwAGkzDQZrncCoCirdwmrHAsHJDrYhO2hbrIucGqKwj/u70y+u47ABA4Brz2 EpKgCb0CMcPJJ4NwRCR7NLzCpAs/AN+eC9dssyVNAEkzeSvM8Cyt/w1CAAmFoMWru4YAO8gTM+wB wMprBVE00T8gTQkDQHK6sAMEzNDqzWCH/cgLM2h8qgkx8hm0IFO2ytbRZhfynMiVBmHrfq3O8IQg QOw9iANjfK1Iz3GHjcIMx4qt+OKGnCnxqUvtbAPFg4AQLS1bZpbxICZ4ZSUDUDlAAQB+QwpAfbRE +qYA/zZBsuWPI8KL1mE7sA3MjOcONmmzxnnEEztzsLaXkbY1xq42TFmuA/8OkiAA6rLQMSHpCt+W EnE/0GFbQLy5yB696E4I/wHAi2++wqThzu0K5SPSxAolvi/fYsvUuN4eK7R6Qf6DaCqevYtBgXAc kJQL9I56ljpfvNqnwAbCqUhgO8JbnKGEYVGPaJywhwMFYZMNetA8F5gB7RKGl1g44AhbAtEFOSHB D9pgFy6MYWL2AALBbQ0EKnQF85xliJBlogkz2NlirGWJIvCvEElZgRKNgbCK1FCGUJyLUlb0AnBR oggTfIUD1HSKTYyBYIfATFtG6IjiZXEQ21MQf5ookQvgJ4pw3IkDQEDGxCzIEjEoHGyKYMFEUGAG oLNEr44Ak0JciQGIRKQASNClnQQmjpCUiEpYhEhLoOCMsUmSIgyECeSwUf8QJOjjIJpgtYlcMpKo bEcMcqi4PTwhdodxAAMNsQIgnA4IDrKBwYBwBE6ZIC64PFS6FgQEAwLBTyQo3XA46TwQ8NIrRQBB EyKnJBYA4YvA2WUvCeGLEwrLhoZwJSxTSU5SmGAMB1zELiDmp2ki7jFHaBohGNA1FqyHBYkTBAsS iCcQEEhLHByDt1amQUto8jCoodbgbMnIA7mSS0C4kKkS9BkwTW+YzxHgMdGoTEEwrzM0hGgQKLAe zGBJLhRNFOnWAT5iBiEIpppBEGbwmQ6BMREY0GM5dyqKU1oCTDQ9FpQoQIGXvmlZe8EMCSjQIXBB ySvMO5bwiBqEdDFrSyD/oADAZnqJFeSzMAxwGIJymQhm2gBKVvzBDJTQCuaNYVKupEAr6IWIUBpC elDBAAne9AMQzIAwmHGQAyo1iCl1Bq1eomlR2GIpB8wAOowoBk8nSwoBAMwSQ7KiDZBzBMI4lq2G 2AwLlrGHGATBFAAgGGZ0gpzO/GA/M9AnZwZBAblYQgAx8Idud8vb3vr2t8D17fPIxQGoJcJpl7UB hghBSnAR0DLCewjrWEkIopKDG0qYng0Gq9ntAmBGmDlU1QjglYYIggJk3YwVZ4BBHw0vEZOkrHw/ 4Z5LAMFiMYhtYUnauPbawAQUkM8MbGsDENj2CQTeLiNl+5jaXgIFWgWG/4QnTOEKW/jCGK7wftry qa+Gs3k2IGXcnJbA5NnEcpvSJQCoO4jsvvSlQIhPYT0k4dlixntQIkEMjuC9zdw0CA5aKyEoRyvj zvfImbCsfeG1Byc1om+IWK0NqkagJpfYBkqTnlccbIn6IoaUTwAXnr4HYuR0t0AWhDAAgpClAEl3 xXXt6L3U2BYSROjGhHjAkNoyAxBNqXBVFYSQB0HkRLBAp0hOdCQU+lN4jbcRHkLER+MFgIeY4GmF yDIA9sLlShzByIUxgdl+MMsPX3YzIzaWgqVZFHmpmMWglDMh2hYd1ODZo16yCwnYemkwFstSg3bv OJf2SUUbuxGAk9wilP/GHCcTojqDgPKz1zEhLPvNAXbOtKKkx+kETyKn5Dm0IpBL2+S2Sz50HUSk 3gxr5cr6b6oezhF0cus9UMDICVKLVgnRq0MFe3LvPQSjj01wSGDgzJFgNrL0K4gikICNy5onCQ7F OlwRrBskWfALN01bb0dClsquygvMbepBoMVaTfhMKy7Nglb8wHrsjvMioKSiH0SK3t9tFAlUSGrQ nrwVDODXOv5d6EN0pOBId8TIG02I1q7cZIcQbf3GQIKi2Hupe5nSEVzOFv1yu+NdJjlsXNlu5riF m2smFBBstaMXXwnOCTqUCYLQmQIxHBGlTbtEL5Zzj7LlxUHIofReyiX/7ynBv8IbdlhDnvSCu7LY jSBqIYTXJOitZ2hJPR0JXspKKJF8R00aqca3tJcgwGsSTyg7YqKpCAz8bEl5BI5MYvAAVWAARE3A wHpsbjYWgBoRsK+9oDAgMRHRnlOwt5MgckEIy+7sRo2PviJegElIwLAQnnqAV9iHGjM9YQWcirsh mkA+Wc1ggjbZS0En8QCxy2afLuyg9Od/COhDxFEwc2zdQfl7TJgACMP2Gk/wM+cjAEFEfwhICP8H ecxgDZhGPZxxARcgAFkVgKh3U+XhWASoOwKwdgn4gYJggHX0Ck7jIcABOITCZxYoCfAHJ2rVf4vz AN0DgjSoZyPoCgCR/wg/IAACsIIs6H4rIktkxThx4YM0SHB6ZoTmAVCosgfv4T1ic04YwHhHWHAG iHBxQmpDeCpks383o2cbWIUJmDMwyCIGGIZyYgIYMAZYuC36IVBiGIfbtYaqJxsO8B51KCerggFQ qC0CAwIYKIdHaIDk1SIvAAIeFjMoAk4t0k8vI4iQuF2wIivlQSd8uDh78ALfQEQuYlk3kk6R+IHi EitUWBF0wobmY1mI2IeywQC/A26hGIuDwADvQQAMWBHZMQ5tyDi/9A0rwIqGwQAPwA0ccIuyKIc/ 8Dsx8AI32A4oMCLAqEAXQADfcAQCNBd7sD+sgQLqc4zeOGVAsIY51f+MfEEb4yB8cPQ+5PAAXUER e9AE7bcNR5CH3xiKtjNlI2cb7AiKoyBqS3ETxuhCP1AEtdESAlBIFoERBWEQZVGPDnkIyfY3BGkb GLACF0COmQAP2rGGvqGEUNQTKrENTXEEDaEKoLAH+VIE8zAG3OEYD/mSEIlOh7CDKyCO+MQVnZMJ KMkAKqkl38ABL5F0kZEUvIAQLcEBD5APTQA6IaEKW/SUqcAAtSAQueAL4OB7Q4GRMOmNgHNAfSEA K0AaCbFPxXAMyJBIaMmTRZAUHMABPgkUR8COpahoKDmBDxCWCzkOMeBX4AAOBrYN42APHZGUF2AC /LiVMNmVLOMATfD/AndJEP94XdclDL4Xl+dgmA8ZHU+5masAbYj5mR8nk6A5mqSJGIpZmqiZmlFx mqrZmq7JDqz5mrI5m5AhmrR5m4YRAgqwm7zZm775m8AZnMI5nMRZnMZ5nMhZAqAQm7jZnFEhBS0Q Bi4wndRZndZ5ndiZndq5ndzZnd75nd1JBS3gAstpm855nhQhBUignFCEBOT5CcyJnvLZDur5njLk nuV5mPO5n6RQn1GEn/Bpnvw5oM7gn+1pn0YhoI9gkpdgCvpJoKVpoPeJoNihoIxwOAvyoJPXIYkI obMpoTEEoKVgoePGL0hpSW7BAfTooagJoo5QAghABAjAno1wAhVQ/wguUAFEwAVSUAhcQARAGqRU gAgu8KMnMAGGoAVBCqRaQAg5egJhUAkimqAPyjxo+AhowaLy6aKM0AEbMABgugFX0AgIMABlQAgV AKZgWgZIOghIoKZq2gGHoAVwOgAKQKMuUKcDsAGDkKZq2gI0CglTWqH6SZBuYZHvcAuxI4zsSCwP sB9HAD81ARV70KjvA2vvIxizRiDtUQTrsD/AiAL5041aimRcqghUAANzIJ0TEAID0KaJ4AJZMABz MAgTMAAhQAUuQAMbAAGDIAUbYADW2aOFcAUDQAe66gJXkAUtQKxlSgPWKQg0MAAGMAEuMAFQoACT MKibEJ+KwBYC4v8gmiIgBLAXQKQgdMQ8CkIyqeVRblE8bgFN2SUgMVAU+6E9HHaH4cpce8Yf0Viq lHWqiXACA0CsgnCsi6AAUFAGUDAIRAADBssFAxClNnCrNMAIUNACxTqxgkAHfHoICuCrvwoDXCAJ 3KoJ3qqDU2KLD7EjxbgYgOKufYZICXIg9EQlxtEXRTFY/4JIfSIIm5FbiIQWnSE9QFAEMBuOSxkp uyckyeBGKcYID4Aiklm1Vnu1WJu1Wru1XNu1Xvu1YBu2V+uRxyawRDqkhECtimCs2CqyNgAFIVAI MNCkNlCmgYoIE3C3VDAAdLubh1ACWUAHhQABghsJJ5sJKauDs7X/XUBGCNGlGa9ECKbFQVECkaTz IIqiH6ihNFviPZInCJdGJhygBHLToYXge2mZuqq7uqzbuq77urAbu7I7u7Rbu6v7BIw4f2bLCFLw sGh7CHlKBDYAAW67AYU7CGVgAIJgABDABSGQvHLqCNMapVIAA0RQAXMAASfwnsFbCNlqshTarSSa CJcGNb3CSqj2bDy5AkwlbJZbYv/GHBhxBFx1KRwXa5yzuAZ2EiiAAm7kcUaHaKHIArkrfbubCGEA ATCQBRSLCCHbo2Ugsnl6AoMrslAwAMS7sANwo40ABbVasQMAAxAABVCQBRuAtmUQt4RQBh8rqOGL suOLCOVLuQhT/zXH8gOO0hZFxSxF567wS7pAS3U6HAS2RXoclb840WR01hbpRAACHImlIoYHjAhh QAfMqwAvbAPGSrERLAh7S8GEAAFnKgUKYAA0SgQcuwgGkAVt2gFQgACD4ALEKwhoHL02QLBu+wiH iwmJK8MPyC4ck8RKcG9ccSlSA3Cxwzw/7CWMJBRqwbn3625IDEogwIOW3L+N4MQPGcVVOMWougHa agiyCsbDK8EDQMqCMMeIAAPHiwgGkMaIML02AJ202gIQELJ57Ah73KAxnBMPeGlx0yvglRlLc8g9 7F2LfFaVS1uKYsT4C7qLOwZ3h2uMoMkOyclH6MmKQLDhqwAbMP8BVBDOZVAGVADBrWwDyZsIXZwI IcDGi3CrHHzHYtykUKC8hpvFfNzLdPGAe/BYVpdVrYAZOVQEI+W+hqDIhDBoUGIWJiUIzizJ0NwZ CUIwP+BsM/fEkIjNNKjNgjCdhZCmsNrReqqmYwq3cgvG5VwIKYwIVDDOIW0DJUChYTAAF5vShDC3 4JufkTDDgtAr6MUC2WVFDqAEQLYddbYMlEOLb4LQ0cYsJrBUuxAgXOLQkXwls7i4EuIhu8BIzWjN 9ajRIMjRNvCwBmsDz2sIUqAFar3WMLABWoCkdAADhDCtclq9rVwCAzCmhuClSFDWgiCxIV0BWdCj EKDCf/2qOR3/oA/61PuHJ21xibOYOWMgAC/wcPFCAiPxZx6VbZXDcBewH0FQKkdAAcvAJHtRQZxD As8ig9DDAuTo1eF0BLlAALTtEggzjSNoJmTrCHG5CPBIAC4JDS9gurPGAVQI1h8o1rcaAi5QAiVA p3oN04mgyiAsrCXQAeM8CHQwAFzg3NhaBsQqBcSaqsorBc7t3D1aAmUwB3lbAhIrvHc8ADMKo8G6 rfjMyxq6CuGUI1v0N62wB5ah3x6FGv1NEnvhAIQB4CQR4AMUCbBdCOq6xCwwKUazCOL3CVONCBiq IFc6CpGSTon3CMidgGJdtzCgpllAytMKx4fQ1oRAp2oKAw0s/wWvrKYQAKsKMACCkOMjTbcJDKf2 PMs8DqaGfc86/UEPThIGkgo/IC7apeCLMF2g0GmFgBy4ewq0qF3NUOATE3CtV8DRV+I2oKwGoAUI SgUG0MCFcAKoXLFaYABXcLc2EAZEQAcXi6b2XOcGsOd8bgB2LAVcYABQutcGQARqbuSK7UJJ/jcx 20NAQKqIIOWfYNUHHQTVtyUBCQ1FNysjjoBirji7bAl9rDuL7q5buHGt8AJKYBZ4ciVmwzrxAAJ2 piHsIyTbxDemoQQEQzYUYNxUTmiVRhcxoBa8UAgGMQgU6CQ/MC6c0zBXAj9eogTsGANhgmOQ1XCO olWmQmQEoP8EZdfp9PfpYhPqlTDquVPqyBxO0lbhlKYETPOArJMuBgYAb/RfYAICCMYfRTFS+M4o D4Xvf5RM9QfAeUbMjHss0qM3/YJBF7BU4jAkE1Q194XvL7UeHy4IUKI3w6QxlLMlgdgoYN544h42 5E4J5s446M48MdC/LM/ab1LhLGdyOcc6QDAS4UXVj4Ec5cJU8EQlxBIpokQsoU1miTMym6XlUALE a7UXaDEjVbNzQMtMRrwZ+3cy7rUMYxB4iwDumUAFc8DiO4G9cn4IDWwADTsKIw82JT8JJ784KZ9G CnK0Mq8WK5Arw+EwrGM2USUIS6mAAHAsgdZi5lY1csY8p17/CDGgLkwDKdM8yD0tHpr9aC0GxEbc E4WwH+7VBDGw6ozA9Zgw03S7E9t934KABB9sA2bfn2uvO6sfmhqaMBfgFSnvIfqwKlpOwzbwBEBs CJI+ZX8/a0UiUw9o6ZzDQ4RA6XIDhLMGZ5NmA+hVCD60Wb8TUb5iw4QAyXtRF+8xOjy8Zr/f+SFf CfAsFWhM+jbArMygnn79Qa0PCffYQJtvLbOfQA5wX6FS4fwS6XDmJd8vS6eDXoDAAXBkYxMUU2jT BPCQWEgB4pgYEylZaMKQSMJi8wDwY+MAQCD5RFLIAARAokRAACBg8wPA4agEVIgBsFe4AhBE8rQy c2pzBPD0/4piaYmxzAwdbUnlYjMxUFE4UW1dIrldWDIhZSMOLTXh7UitrZ4InuhCVUg0wB0OXz4B MwcuLymOnCNzNv5JYwbFwImFDBs6fAgxosQKFLVIvIgxo0aNRCDcOwjSkoMZrkqaPIkypcqVLFu6 fAnzJAdVACi8IBALmihOiRiQmMGrF4BMMZRIMuHAhgAAFxLNqmWDRZALQfcMKnQokYMgKySRqCTJ EyhLIGYkInBqBlglGCSBKPZESZOgDGDJomULlw1dvOoSGLs3SKFjoGZQSCrNWcjFhbjMGTDAQAds 5QbQ4VJmAAwDAksMCFEIwYAORLIMgJAtkZQTGzTTcZclRP8HCANiq5MyAImjFlno2SvUQYHpAXNo 2DgBGXIZG8ITlaADY8AGIgJt1KPRArKCCYxtcNECPrz48eTLmz+vBfKGFgbQu38PP775K9W7h3QA 4oH+/fz7+/8PYIACDkhggQb2NwMAyKCAUzQ7SfICXkJlIpZTjCjFlIVQBfGEI0VcZQgiiYAAliLI MLMHBSI6EmEjhSxyBAkuRkWBIw6QUKMoUAkVy1N55bKLDb4gVggQxRBmQ10rQqOYfdJcMUAL4EHR WjYlZAFBGe3REWUhUmjRQWgDQFHGCVooMIAWiWRHhxalQSAQDGVo6eaY5OAGWiIKwOBbNZPNEV4Z MLgQhhb/WGqBAHO9lQNBFkRowWULidQDQwh1QuFkpppaAgVkWaS2aaiijiqNA0uSimqqqmLwxDMN 6gQAT47EMNSEofzEgAMMjHEYhk0V4uNeJFzggAMCBAFiVomgMApSF6gyBjQftlqsCYI8EYAjMwBD pAkAxIAUAyAAYJQNMyiR6w+e2BVsIbcAycsFoxTbxBg18XKMCYV4khOTz5BawgZ5FpKdldEl2tgA CDsi2gb3GACDN1AuHEaahVSZyGSpfebInn3aYAAEjrhgsQ0wKJAIEosiF0YiXCjs2wmJVDCaqjaX wwUdSNBW8s0+/6zTGEEBTXTRRznyKjOitHUUK0n5koki/xQoWNOvEf47Cyk2mKAE1d8CwDQAJXaC rIIEBGGWtF17zcLQ+34riQAkUA2EEuVeMLeCQehCSNaO4FiIvUG9Qve4+gqibyG0Rs1Mk6RO1nIi NFDmGcqOQDBwIqKBagMVA3BhQwgidzxHITBg6sgclnOsJ5/W/eZOQS/TYbqkhahcyBy2J4L5x8AN cIXRmVKhhQFztEcFDZ8Kz7zNDgjdfPRFJ23JHtQnUgQL+l7wl1YvsPACkQwQkHgoBBSh1QMsPEBh VzYQMKNTKxDQ1BHuQ7PHBRysX74jzKKfCF44QH0vsMEYogWsFYAPFEcooAPO5wj7FeImjuAeAZbx A/LZgP9BRHIAC/rVjH+NCjkfuYaVIiMJj0lCNMZxjmVMtrtCGGAA5MiC5RIxQ3KwrhAqrAc3XECE PQ2HCLVLWW9wYwBJtMB1PswYzKQnDRqcQAEKMAAC7iGFFkJxi056ntu4CMZNXS+MYcQACYa2ByDI ygZ7IMGOyBjCVDXxHZRDYcc2YAnRhMmFRIRBDEE2AG9kQTeOMMCidsgcJv5mAhs4WQiuMDkiwtCI NkBiChV5j8ksDIwuuAIdWhACIoShPnAsJUi8aMpUhmSMqhSeAHxBCKTF6gUvGIYS+qdKx41qctxx 4gkzZwMoANMGogFdIjwHup1JAgmo86MSbYfIJX5MARv/cAduJOnM2y0KCoRMBDd9ZwNNgrFQSFBA CCowj1aq00HQW6c7C8HKd/psahjIliQ4sDYSjAEw6tSlqEqwmUJSLgsbSKcNKha8FQ7ghtbJQjVo FrmCZIF2NthAFnppjZJBoHSFcMEG8Pi6amwAdYWgGTZviLuG3qNiqZljOJ/YvBJwgQgtQIIBaBA7 ecoTlTpVZzx7mqofNEEaTWgCkdzpT1HR7KZcCEF0DDaAMkAyPbujQS9Fs1AucGGGqZFCoypAgys0 khut2QBYK5AFkiKHCDSowBJB2sS10mCrkJHkHDbAhTCl1AUw2AAk0VoGdbhUnMKbwBVCoAAkaCGi QO0p/08ba8qfQnayQEuqUltDHNGoyTMGqEdtDKAOz+Rpc9mRDudcUNqFYvRkyIFMCO5RghBABgZX QFMhuFQNKchWOVoog+2uYBpMZecdnXLtPXArOeAVrQNTrCICDEpZnT42umCEIHWvCzQWiBBVUuBC 5LgwD85agwsf8c5VB9AyGnSAlIWgAhcwWohBdo68zJgAF7wRhhbatzr27eUEtOjeeYTBmO8A7ze4 UB2ZlhdVLtgqFU9AA/Zid53TnXD0WAA+Wmp4wxzusIc/DOIQi3jEJC6xiU+M4hPP4FdGEy9I9Jgp G1pYUxPQQghAWQH4znin7dxx8xgUkyALechELrKRj/9sZA7wk2guPggLM7VQH4ekBB3QWQuIgICc SvmdFd6yl78MZmlIYQMUPQgXNrBH+5RhmF/upAFqCqYwA7XLcq6zne+MZ1KF4QQ3pkMFFpxnVdI5 0IQutKHlXAIE0IGKbJXwoUs56EdLetKUficVKvDm9ui40qaMNKc/DepQA02KVLQioEUdRk+jetWs bjU0OvnJUI7S1alUNa1vjetJh6EC5XwkdHNNRlsDe9jE9rJMg6gAOuC02J3uMbOfDW0LU+GwVKwA Y6Odamdj29V7+IEJiooCFBRBP/M7CQtigO4YpGQF+gn3BYqKlC9uW88nQAJ7rjjvZss734d2wLeL sIL//bEAA+g+YMExgAEWHIEDByI3BwSOgTFE3ODoxjDDUdAEpPA7JA02QDkh7OiNQ1HYIt9xt5sg gCMMPAYHlDjDHyAAjGu8aLq6QBEE8ID5RfwJY4hBwo9QBAb8wJ78nkAFbnzOTZc82/te+ox/cAGd j4HnCn9AEYxK9FZ2+wI4V7nBWUCAFTRhycCmMh1ujGUtOz3Y2o6GBcnenT0IAH6WWEEsufiAN3La BCk/9xMwwPAimKDpk90DA8bNgYhjIOwogLuoXYBpUC527e4U9lIUNNRN6UJslgCCYMCYoEob/gEE OKDCX8AAwktZVy/wOuBfYIKsV3rPNzbAnynPY9WP/4gCPziqk7xFAAfIGwQ1AqMpJG0C0kscfqmf tAOaQHqWE+AFjsdzoj+JBLaqHfetFDYF0haqRRSQGcQP4/EJbSwO9Bwn1ad08lnQ8yOgQPdSvnSm tfBr7uf+IC/I208S8QDEgAEshgoEYCT5wQtjgCxBwBU2sAkjogQPRAJA8ABucwEsQAH6NH5stAJv kR+S8AMcQAIk0D2OIABvgQEmEAPFcBBHoAQhqAQUsAK+9wLEMAYE2AljgCMskHl7AQJF0ApG4wDf 8wTrwzi3tgdNcASscj6yJ2WkVkX0pX+TpWoooIBBMAacsAdPIDZjoAr3sxRKcEAJwgkcMC5AMAax MP8G9/MEFAAEFDB1yBAUvjADB6QKsUQrPDcuK8IAGXhAGdiDugACXngLxXcQrwAEaDguTKM4XZgg 7rMH9sJzVxg1XDiId+czAsACf0d90ZZ8MfAEHLBd2AVrNXUCszaF0SVsQAB+xwBAUVErDlgiiHMX G1gKYBMUzEIID5IIZmQD8vIvV1MIZYEYe1AW2bIUGygI5XKIYHMWsegL/wI1nZAhwBIEPGEvo5gq JnAEnNh+xcYAK3BAD+B7kLVrSIAEvpaKEyZsSgB+M7AkexAEsUQsjuAJTVEX8eMIIBAER4UBRpE/ 9wQADiAvRwAYY7c1sXgJAKAvMQB+RWKI0vAKgMH/LDlBEpJAAYTwbV5RCQpIf5mCAqzCAUdYcheY DD2oUyVAA4uWbMu2jhbWjmnzA/MoCUoAFntwE+eiIPh4IeQXkdSYOD+Qk2sDCrSCNhcEgACgFiRS FhfygI5wfs1IJP8jC0Fgk0w5LmARdTFgJACAQFGZKlb4BC/wkfP2AyvwdyjZStOGWEhgbS+5em3H DO6ICgBwP0VyN1PzfSqXIfkIDeVnj7VyLEEACStAK2NRg3kzA5lwDBTgmI8JBAUUK5Kgg6s0kMsC AOjjLTjymG4oIiywChSAAQ8QDIUAlqOCAiwHQuv4ACCAASRJRntmb6YGl14Wk4VwI3rHFmwEBCBQ /z4fwpP6uHuSECN7cCMxABi+8AN7kDgOUARHEASR8CGw6S6MaJosKJGXWQhUmZvQECFkmQiQcJ2o 4kFPsJpwuQetSQBl+TMd93FaVJu2KZeWQJem+ZB1UUB++YxDpZ+WwIVHOAMdApyOYC/+ZheJAJrG CSKXkILvQwFDcyM/CQ2vMJWZGTh6cRYFpICOYAIcMp6jUoOYGJ9aQQAgoI1FQzy1l2MjKme3uZ2x 4iwxmBR7cAu5Yi07mSQ9GQpEwoVAgAL+pgtDNZNjEC6g+Qk2QHzE4gAoQAJM8woP8ANCJaMJ+QS5 0gTjwozZWaEAJC+v6W/KQI3kuKRd85XYmSl7EP9xasmiywICWlM0VEYEiJV2a1pnwgY4SUk1M9CD RVA2NaELjbAIkAg3ReJGVEMCG7guCqIEtIJBCUI1IDAWDrB5CgIEvzk1CsICoQcSoAkYH9IvpGmo 47cHtEI1T/CGhaCpmmICIKB3dOoIe3Bu5chgV/BmIXCKrnpnwrYCd7k1pPeKiWAC8yMASQF0ssAB PTh9ANgVTcABMygJDHAEF8QLx7osD4eDSfJw8ycJ6YmUL9CqzFAEHDA01nKEAzR9S1YEYZcJzMoL ebcpFzADtoirlnAEvqkqhYJYtndq8yqf7MmvjtAEPvqv0VCD3wgSiRZEodQB2zew/RpqFyAg8lr/ Sj8ABL8aKkfQKwJAAdRpMw5ZlSIKEk2QgQzIgGMgnIzxABSgLygQBCcqKuLohCFhdLW6og0baCSX Z6TqNTvbTyC7KaCZFJ6gpjdDDKEwBhJ7EPJShy03LgjkJPmiCGMwtKSicN1BajYlhTaLfvP5aD/A AF8LtmHLsWB0AR2SKhRqAxEytaoCmJkiLxa7FOcZEr6ASz4zEnUrCS6AAAaQWLeqtY+Gs3T6RRiA tPbxA433PpcZIZnAACiQdSiQCUvKsRdAFczQuLxQfnuAAv1DkIgLrNr6iwAgsaVpIxgnCU3QFBkn JAwZCj/KRoh7uAYbEg8HDeeYjleQf39baA5g/7a6iz2tgptcex9GyhVoGyFFYC81MSPf0n8KYq8A eKk2waGkeqhteBdaI6l5AzaIIQhRIy+ju0YiqCArlghvCJptQbc24KkJ6Qp647P2sSsDsZKM5pK+ O2k4iQKUq7/7y7/967//C8ABLMADTMAFbMAHjMD+KwheiQICYJ2Z8ogApwQk0I9puwrmqYl2WQg4 ogRAR5oR+DYflMHj9wM4YnUxMoF3UQs0KiMCIACCoDUmUARB8bZxU42wyAE395+mCTYC0BTpS5Xe ggwuzKijEgMMMG1865bXZr+U9gMIB8VRLMVTTMVVbMVXjMVZrMVbzMVd7MVVPC4KEgMKFCoRwv9i JkDBSREhS3I2STE1r1gXXXEjd8kBD/o+QUCRAIALPtKHBGhGTqi06QaKOroIIvQEZsuPycm6Qcx5 mnAqmRIDD4AEdIBvTWzJqxYhwKuJoYIBGAokagwAIlQXyxCdpdAh8nIBURql02kuD3yq7VIIhocC 2yJv8kKyJOuVY7ECJKDKUVqcSBqRQGyh3oKJ32fEKBByl6zMk4ZyiXABj9wdpPuMoIySOhIikqAL xrCzVNMIo+AWNdIu9To3yGLHkvC9r4oCcBg424x5wOwIwqyZC2oDxhwqoyq7y4zPj7aFeLsY4ilL 1OwIs9AVytKLp3AMBHAECa3QqefN+wjOEsL/hepGfbRSywcamJmggAqt0aDQtqu7ssMsz/S8KamZ zyW9arSrKSyQpXuhuKEMsBniofuICMzCz/AoCa+MFx/yqxRtCedsw0O1Ap/nk++8yCBdzA+ZKYRr 0ksNaj8wA/dsCRXZE2lswUuCAXZMAS3rzKJ7K9ZJmvriC3uqxypMjYzTh2fU0xaKzXYcx46QqZgb zEUdz0cdKmXrr0yN12H2ANC8GLQCPy6Y1aBsk/rBhQCUgW5EeoNqwU+gH6CpNWkUBAxHABm4x3hR whSgH2ixCknBAORYCPKyPvuBllxdCOerH7Qyfh0NzwlJ15qCHy6b17GNZ4u3KTGivGjrCSE5/76v uDfNSwHiaoKO2sE2YqRKUATHFyzwqqj2AwBD1b2fvc3RuZorsDZA0C9FmwhQq9Os/TdI3R1j8K2y Ld54lgyboiu84LW4GTXp7QhZcd7Q8LXQwN6YgAr8FN+okBTvzUZimyvRwAC4RN9O0Xy6ghhC5wj/ faYxsEbjzeB4hqYYcNebQtDA9gPl3eAXHmhmOLaq4pXEVgQUiOEhnmcCMAPvqyoXmWseBALXKuIt /mVPbKK4eoLr6eI1bmfHjQFrq3/IK7U27uN29gBFuOFOl5pp+ONHDuR/JwARXmwDxHKFi+RRLmUO /ARHwM/bxgAcUISwLeVdvmPj83cPcOXEFv+O6GblXo7mduacmziaY+5qZa5uLJ7mc/5la85y8sfk u/vCy1e5dO7nDt4EhilxD9Dnn7akD0Bwoznkf87oYMZ3BJBuK7C5j8YAL5xu8ierja7peXa4K0Bw PrcCQZfnjoVyHHBwhJ7pm67qhnZ4nt5zCh7qCBldJ5dyBHdAGBDqi77qu/5oJoACrTdxFXdxGZfq 0uNvTTBuBDBwfnAAfhB2L+C5vC7tuGZ4RVBLBLBzPYdwBNCs0A5vJtB7wucke2CcUfptyH7t2G7r t/7sGIdYJ8Cw0y7v1C5U1p5zHKDuPEcJLSfFEodhGIZu/X5ATwCKErd49gNzGLec0DABRDD/ByFA YPMu8fNG7sapK0VVVFznwhvvwu+G8bkifOQeKlLAawqgBfE+8Sm/zB1gPHTAxCoP88vsAmeCBPQR 8zefzwgQAnNwArmL8z+vtRPwSQYQ8UBv9DZbAhVQbSh/9E0/oizfAi4vZ8fTSiUABTLDDEQQWKIS Bkzv9D9OPDW1SVJGHFVvR5ZwAlCQzC+WBT7/9V6OAPbW81t2MmafRD9TD17/9kgeBg4fAvDZWOKQ U3V/TOvlCBOgdOjway6gY4yfU/nQOb3kGbSDDrHD+NOgdPrgDhMwQ1a19nsf5Um/9EBFBSqjHQZF +MQUGwKBAMVVHI5AB5g1BwSGJgIxAaUV/xvcgCep4zqTL1aaQR0yFEiS8xinsUnPER0wQEQkkxzo BfqbTgNvRgeZb0pSAAUQoAUVwBrVZDqWQzNYbwM0owAU8RjGxCVEQBHZsUdtFQ5lAAXZfwJYcidn bwNz0PsERWYVECnCrw6T0wIUAQghAxU2NlJQA0QVdIk2FQoDJxUlhZWWl5iZmpucnZ6foKGio6Sl pqeoqaqrrK2urVQnLSEIUq+sNANhlWFZXIUwCjYng5UlMCGWLWWGA3SWEAaYVwNUlTRZHc3SlS0b hSVZWbuFXAMINgYDlDYQyZVEMJQVupVaAxM297a3/f7/AAMKHEiwoMGDnK6EaHHCBcJOE/8GKEDg sBC/YETOWepQr5K5fBDKVKDCj9/GAUi4VKwkZQC3Qt7ADXhXyV26dTYi0pDCU0pEbQrmWCpxIl/G lQ+TKl3KtKnTp1A/TaDTwoA2qPcGDIBCJF+hMloH/KpEDGlEQh02aN1Ah4amjFrnnLC2Tdk3GyWc XWoB4+a8sIAbZaF56WjUw4gTK17MWHGJCkgUVDDJlAoRJFm0Xim0YQMNBVlWGq50tlKFEGBdapoK aUAWty1f2oiJV7UyZur+hjDAu/evmW8HIG1MvLjx48iTY6KxsOtSF5PBdYCwwVYwGy6ytLiGz1Ku fFe8+lRHrhIVQoVc0NgAoW6lOXfzEm7/lyy3jTAdMbXYbmykjdHKBSjggAQW+I9lCoQwFkJURGIJ HVlQcp0NCAygBThZyIYEDLaU0V4lHLllCX7oFbJhIRDwZwMVMDCDVxYbrMQROvZJsYEwIG6QzwlZ 0OVIdxlRZuCQRBZpJJFSIIBEC1oMNxAjRHDBRUYnAIOjDYJ4dY8BUiJRjA3m0MJFBTBAUUgYCwpy gpSMoJdRlBXM0SKGMEBQARfE4GifDdRMxMU9LdhSQmd3EsMNNVpwwc6RjDbq6KNRhWFAVVcVRAcM WsHwTCEDCGVRGWWwc4JaA5SxWSVXkCoRO5CYZEBmA2xQJTiCDAADAi0MIJMBPGpFBzt7//KZWoYm UTGHVhlW4gIi3UHq7LPQRnsLdC0ocIWQAJVAw07elYedoizRUOklYdBglojGbIvtBNyGUSkN1qiH FCOLFtIBDfWShu9y3krr778AB7xcCAo4JzApIdx18MIMN+xwJhPIouDDm5zgpWwUZ6zxxo5KcQUS SGiRL8UhZOgkxyinrHJyHVBFR78rxyzzzDQz5YIWCV5b88489+xzK1xMOtfPRBdt9NGFTEBEVQsi 7fTTUGdcwseSjRz11Vhn/aikLbys9ddgh13gzQoggY7YaKetdmJcLDT02nDHLTdBSs+C7tx45623 KY8pUPXegAcueCY0TEqHV4MnrvjcN//PUsvikEeONgIENyT55ZhHXbdVmXfu+c+PgRzd56SXvnIH kxps+uqsO+zCCQmendPJrdduO6NJEiyyAire7q8ddqTQRRcZFG/88cenwAQTAfi+tmWY6eW8gTik kIEPQ0jwQQQeJCCGGFUkIIMMYshgAfnfp6/+9+aTP4UMCYQvRwIeROCFBEP4kEEKdkxfsxQlCOAE BlguGoRhArVyxrYWyMAFHnCAASwBtvwnECZkQAQSyIMHxDCFDk7he3cQQhqGMAQykGF//AuACkGh wgAET3gmFMEQ0pCHO7DPg2KQQwTOIIIMvGFIAbDABw7DBB3gQRN3sIAq+tC8g5WACmH/KBcXrqAF ItAhBCGIDMiqFZkWbHEOc8AiGPczCyya8Yxj3GLZeLdFJGCRDifQwhW4YMAwUMFqFOyEHfoggjTw gIPjE8Md7tdD5jmFCXzEwwf++L4PDrKH/UsODowgh8OkYA150IQcdJCKHagBB86SggvYhYAKEMEA WYyM37LImxOc4ApzFNcAJ+CCAE7QFAAswSgHeC8awNKVvFGj39xoADrI0YB3zKMNLLgDGwZyhyLo AiiTEwA+ZlAOHRRkGsjwQ+LgAAx3OEwSjDBEf4hBA0YqwQQ6cIUTXJFgwzQAEeRIR1oGaJQdmGIF ToBK3pVtN6/swATweLlqnsGZCdih/w8iySgckEECEcCmIHfQh2kypXpNLMQ3w1kJRF4iCQz9aEiX yYRL2CEJmEiCRW3whm6Os5wotcTyMNFSTQQgBZZIQgK+kIKYJueJHViEAbqIBF5VAAEdIIm/XNCB UvJzSQkqZgWSSlC9BSADH7hDB3lwhi5k1F8pgCgHPZAHH6y0ICmYgh7WsIA7THOjlZAAOCuBBzcY AQxi6IMleLAAI3xBBnothA6+UIkMVOELRlgADyrxBhVkshJWcEMhxpmGM6jBCFbYQSVkoAZLiMAC RlBBFTJgCTvwoAZrsMIZbNCHNYABsSooaWNESQMtoHI/SDDmFTpQVYaVgJ1VhGcIjP/ZAdqt7Q1n 4MEH8zCEbj7MDkPwQvnu8AGcEgQHVrCC/XgABiXaAK42SIMKvFCJDxhBBl4QwgI0EFgP6IEH6bWC HmIqgTQUggkL0IEQvHAHFSSgEG8wwmMLEdnJgmEBipWuETjK2UoMYQkW8IIX3LAEH2jUCl+ArxhU IAEc5MENX8jDB74KFZ9c4ZSrVIS5bjmz35qSYEU9AQKUmrYM5CEBCeCBBJybMuhGoIMRsHBAzmAE 2dpgCBog7TcXGwEwrHayX+CoDeywgCosUwX2LYQd9EDeS3hBBZbYwRdQ2tgB26DANkgCGNQQWBt8 YAmkbfB322qJBHDSBkLQgHVtIAf/MIDSA4Q9jAvwRAe/GXPGLDaaFKiAAC3QAWTG3FfW+uCFDgoh AySeWQo+EL8IkOEfIlCBHMjw1ubhQAP1+4IILIGHL/A4DV/AAQ7UoIMhMPSsNpCACu6AaY02r8yW QPM4F2sJNQjBBnImw5gt4QMNoNQNYrBECu7wQzl8IdMPccGJIyNPlcjNBQhAMRKIcAXj8gwHZwAy aY+WAiHEzws8bgUPQvuFKaQhkrPWgBH0sGcbAPqrIljDqvEABiNowA1CaPMl5LAGFehBDDtoIrAh K9k0k/MSBZZzHlRQAz143ONrkIANwBABTV5bKSXAE7crMFDBqbMCBijbmnqrsgzw/6AKdxBy1Gxu AQ/ovBVkkIMFwLCGGnwaB3pYgAh0YIWMiuHklQj4qpcZgSqgdgnlxIQPxOAGFbBVrxMncMVfinEl yjkCRvCe+hJAhgCooOSZsDa2AzKB0yToBGFINOBKEIYTECwE/qGZCKZQBXiDDd0dPOIq3qD4NA+h BpJdsg26sOtKnOELIb088/AQSTv4oAoaiHcKhlCJsGpgChbvstgnK+BLLKDkch4CGEYKWSlPWQL9 k3tBJoCzonq7dIMeasgQhzIyxK/xaNu6DEifCjKsgfmFmEJnwesFgRciBRrIug0scOcvRJuua1D4 kdfw6Uq4gZM4qIGU+9DdyS6h4v+FeLCF5cwEPcC9EEsvqQcWkFEhFNkGTzcQ5+E3RDAurSMFLeM3 FWBuApMC4IN8a+MD7/NzpaBWO2BCQrAEmgVeNuAGahBJd2AEQmBCU2AEzJcGSxBkPnAGeoB6rLVu HagGZ2BCPLAEzLdhO+ADaWABX+BdSaABPVhCX1ZJyNZZhSAEa5BzPvABYPBfNoB9biACZOAFJFcI EaACeOADc6cKzEEpymQDhWM3FDNhmqU3Q2ABPIBroYADCUB0a2B/GkVJjKUBVdA8ASAHGrAGmIV8 XqAHRrAGGiAD02QFYFAJdlAFRGcENZB1SQBaijgEC2AF17cGQnAHSwCId9BEclb/CHmgBmsAiB6Q UWRgBV6XYZXQBwvgWrSXClLwCH/zhf2xH6dyMH1QBXIQb3gTADwQhaiQBCS0UngAg6wlARnFBPmT CTggAnjAYz4wdaWHByKQac3YPCIwdQEgASiVAnjgU8hWA5eAAyRkZJZABkMgjlOGB+XHClKgBWII i5pAA0syOv8yBDogcolDBm6gfQFjAfAHFVcwCwbojpkQBgsxi9HyAW4gfoJjBzJge/4SAQmgAscG FRPgNwEpkJvQAWXjI87CAzKwioNzB074L24ATiD5EBUABSWCkaGQkivpKB9gAVtoAwEQAcz3AWUI EEzAA6QlAjwwk5mQQZmQBDzQ/2+rIAQQCBAeQGz/ApQHEXMc2Ql69wk8kQm3NJWogJWjUJVGQgUK gDFHgo/miAmT9H01IIkBkQEFMEQ8sAZj2QlDlwkiUADQxwoqIAMGIQNPBjcloACbAgphcCt8Iwu2 QguWYA5jcS+FQA/E5wqMyQqvowCYEg0XOSBDpZXKIQPOuAmnxlFoBhB9YAQb+JadsImeZX2u8HAG kQRucJJaIwUKMCuhwBEGGQphsAHBwBuIIJsTYAD5EA5EYC8GwICnUDjE+QkIAANZ8JVDhSmyOSSP 1ihDQISdEABzdWb96A+hmZOkYJpRh5qtoJoGEQETqTZ08JezOQC1+QksMgdIkf8RL1kbF3IcuRAC SCEFGSE7QxICwXkkYlCXlhAAO6ADOvABOBBlBGYBprUAFgB9Q6AGbyACbqBYRimBNVAFmzll6uUG eJACoulmC4BvH1AFaoBwRmYF31eEcgmeSRABHlgFETdZajAEGSAD2tU8aRBZe2kDeuABbyAHCyAD OhcAOnB/fOZd2OUFOeqMaUCgXhAAbsCUlZAEMuCUUNMBc6CVJYBUOaGehoAA+cBoxJckiLMh2DIH LgJufEcPtEBLCJAvNDBjmBAGCAAzm8BolLCllECnx2kRN6IJy3AJ4MYt1/ALNJAPE3A226IsYAox CCBp5eAW4FYpemoJSRKVmCD/BS3QmAViB1OAbXagA91lAXrAgxzFdDqgBtynAt93BmvgXm7Ag18A g1eoA6vKlF2gBqVKqjKgApo1byXFBPJlAcSqAjowTTLAlN5ZCM43dT7wBQzKfUbgAddnBNznBnbF A+plAVawBntJa9l1q4UQAEuQoh3ojd+lAZHFi1A6qjUwdOZaCXKgkF8TAuv5FpjSKdSwGS7gDMQQ FxXRINzQEv15CVBUDrrgJWFBBxVSHlwAAWFhAPwQBhCrFWVwN5twD/mQC7CDLM/JCRXCqenhLa9i sQsCBTCgDkgwDOdQsVDQirASAiaBAKlhK7LZIloAKy3gEP36nOZQmZYAc0aS/wEuiAnWFlh24AZr QGx2Ra2FIAFGsFpQqwdCZgdWoAPN4wNLkGU2QHBT5wZWEEmoGLU2cIX94wFL4FyhZo+X0IYE+rYE agVGMHXZ1X9LgFMpAAY1sG53sAZ1mKCV0Ffl6QVzS5MaQJ3btwAapQdNVwlNVn44YAFrgLiVEAd6 EAdtwAaaywZt0Llo8Lmg+7n3IwGkW7qk24zVmLrRNDysOzwpIGuwC7uPYkJ4oQA0ZwNQci/Rw6+x AgG7VQFZ8CEIWBH4gbHLMQDwUiFWAR3NwhFIIC70sLI20gJccC/HgqmY8Jgc4RLiAgl2igkG4CKe IAhacC+CcBWQYBX5cA8bUP++9ABGSKUOImIOBiAuHeAlV4EIEIBUW2Ii4msDSPAhnVACLXC7xkG0 mRAANaB6NpABlWcDOsB/llAFViYBa6B9zaZXQncJ5POEGrCZeLAGmnWFJZUBCtdYRloJbgu3BNpX UycC4jgE1ueh92fB6RiAhQB5l6ADlRQAh2sJFqC46Yq4rydtS0C5hZADOXAGTNzEZxC6ULy5UswG cTACPRAHWJzFPQAHI7AFPfDFXzwCXbwFZFzGYlzGaNzFU6y5W6DEbvzGEhbHcXwGJFTHdWxCeJzH SbDHfLzHdtBCgAyUQtAAOcAHK+sJPWsJXsK7WYA4+LGej8kJufALeTGfkTz/B4d8JtWAH5QKBU2j CdprG7WBnpsAAWYyIlGUynuaHwDsKbmyKPdQIrkiHrYhC5dgGxAAAytRMpTQsBjysZugACIrIGmV CT5QuJXQmatnCRFAWCEsjEwABkOUquNTzWqguDuQtpawnWUbW5Wgg1x3WeVpCctqA81qCUOQB1Wg A3qgAhbmoVnnqm0mBnpQCeJZCWIgxD9cCUGsUdf5hGAAoN6XCXeQoQMRAEzQUgrdUl2Qx3lcx3gQ 0RKdBhRd0RTNX1D8uTkQB2vMBmScxSBtxWA80j2AxiYN0iDNBjkwAgVQAA1QB05ZIRyZC7yLMTZx CdTwvdzxCw0yK48ZDkUx/0sTAANaIAUtcgLF1ZLdQZssARyesAGnnB6BgbzDAANCrTQRMht9YQ/N otWW4NSWQAUd0L824CEPghNGvSnUgL2ZIMxGMgXcWAghnI6G65nZKQRgFsIKZwdvZwNq8AVqENiB vQCShXbiyM0k/F2IWAMLoEMSmQnlLHWF0AdWoAFnyQMeYATvfHGF4KpdgM/1XAj3XAjWVgj7XAhV IMQcKNmWMNqbRZopwwQpMNu0Pduoq7rVSLpb0AAFAAdmsAeeQC8j4qX9Sspyggk60QmTvCIO8iP5 sL1TvR1cQCrBoJ+bEMqy0xLzoQkhIMCGAEuwxAhAMdVaoQ20UQj34CN80f/UNKGRqYEp3FAGUY27 OJEOd6EA880JmtqnxsEDZjbZS7CZ4HW1l8ADkmjBwvgGGkB6OlC0l0Bw3NgFH2q2NsADH5xRfY0J kY2aYMtEzLoGmx3Pa/DZhUDP9jyS0adE1um0hdDP3/XPeYt8ATDQlzAE8Zo1aDACq4YEQAsP9a3J vFuwhQAF+f0iwGwIIeAWy93Ti9kd+GEAFRDlUo4uCHACFXvkl4Dd7P0J9EA7uaANmCHlYu4Q560P 1dANW90M79ALXFEBYdCv8T3fwm0DHMFbWTCfnsAcR8KauGYFLG4DIrBgglUDK4WiuYZJYeZqFa4G X0XRy6QHXOtm3trN/aP/BlYWdSII2UZ4CZIdYNqHhCFueSMO2pWgBmg5rjUAd2pgrtnlz7anA+Z6 zEg8BQaNNQylEHne1RRC3GDNGaRcCAaQ5kFL1Uve3D9955ngAnTgIy4AGr2l5RbR65sQDmCJsNqQ s5tQ5umN5ltuAwqgMO4h32e9KBtgABXSp2bDKEIgpYWwA0bgBXaQjH3FtNZaUUnwdHoFtRqwA7JG cMSGfRZQUTiQBpxtiXggayxIthT+dKQGjqg1kTiQURu+agFwta/LBG9WuPAs6iQOgKFtAwvAqq+b AhagBrKFh2aVBHegrq5uCVAL7zjgA31FuWlw42JjLQO8AZl8CLwOA+VB/w8XmR0KgBTYgCPFbsnN ggQxAiK+EBuWEOzPvtQaEe3brQnU8CvkkivaEBFC3t22oO1nDhNprt1DDu4ZEefjDg910jucABmN EgBVsKOFYOEaUPdXSISm7gFgsPc1wHxQywNqAAZ1LwYZ9aB7/wVVOK5tKPhqEAFrYF9tWVJJQIqv 9Vca4IR6cOnbV4iYMJfMJwKI/1pqkABGYF8pUAADlgYFAIO9WgndJQZ7f2A6h4oqUPe7GGiTRLkR UPd17wanbQM+oANxjTZUAAXGewkVIhdWDrH8CiNsYTGNgBdIfZiuwSsdCwEVgZiGwB4n4EvNwiKa wk/LaQv0EJvQH5/ZK//12S3tbQ8j/OlOxyKYhZARDEGYZ3PcXK3eY+/UFVL/x2IbgFAGYUNoQzdQ UjiRNXBV+AhpQwNFFWl5iZmpucn5mKSDF5kSEdFncxdqI/RhI3L3gVN4tpaUxBORERlwlvNhCplx l8eEk0NmM+QRa4Oz02t65kXIk1a4w2OZkvNrk5QnJ/FmEzFkY5fjU5iRI054hj0tgeyxEwCJ88GT vhNBGIAqKoIHETbUsCLUR0e6TgwbOnwIMaJEG2GgcNFEo8WALHQ6NLLhYgCRKzAGQHFEKCQdSBMM lBlg8oSUQjQGXLRxZcOACggGTChExQDMMnRmEroCBSaUCpwq+LThEUH/ISkDQjR0QWcOTBgKKiR6 hBTmnJs2Wmx4pGVAJUItYEytWqjCyywKaCiAQqgM3kKHvhKCksXFJi5Qwkw8jJhTHzfVDs/KlTiy 5MmZ+uhJhRDMQhE6CFL+DDq0xIpaNrn46mJmSCI2SgiGdPqSi9ePpKQu5NqGbaO4acP2rcn1zN2P ZkMUnsl4cd+5CylPCTy27rXPWwPfgGTTCSg/RXtvaKcKPImPv5s/jymADjB58OARomYKIS9uIKO/ j/+wHXutkSBZy5BK+Q1I4IA90ZAJFf75VSB+d1TBzUNnFGBfgxYiZkcCeqyhghp32PCGGFPYcWGJ JeaxgA5ViPGGFlCU/xbgACuZiAkUZdyIY44ncIJAjj7eCCCNDfU4gAKYSLEdjEKeh4cbEfDnkB0+ QLlklZvgQMYvZ7ghjZVefieBEUusIYc9VIQwB0qblNACU18SchcUcs45p5KZEEZnnpS8uckEUBDB GyQVzGEAcHxSZscdFshzaKOIkTHFFEk4SqlEQ4ghhhVGiAFJGCG0GWilovIpRQUthGDYqJ+RkUAV 5agKayRkiCHDq7He+sgoK5aThhtUFtLBpycEiWux+FFxwqmpGhuZCAkkIMGvzL55qQyYTTtqAEPI UUUe3OCwzCUTEDFHCFyEim26h0nBBZpELKsuYiJwG0EK8S7JhBdVJP9w7b2HJhGBDHLY6lAJVyCh QEf+LsyJFB3QoUAIVzDI8ETerHgGiRXjh8MQD/JQ4cZVaiuHDHnYi9gEWvhHBw0Ui6xuCTRAjIQW xMJ8GB4PepAxzqB1zEMVcpwRrs809hGB0HhIm7IWBrRggBbdGY2ryk9HfTPVh+Ggs9BpRKi1Q0mc 8eDQTIRtYgAS0HqyeS5cQQTCdFSQNdpVUlEBzUQgYKjdiQEdKTka+20JDiJ48SwPEpxNeINIyzAQ gXhDnHAFHbzcOH4ldJC3AkjQcUXdmUvWxwdyBI4HynYnMUQeIsqRRwZMj26e2my3Y6EUE1xBhwER n4DABOjSLpkUYVz/cQLCIdCBgOjEf4ZDBmnc8ewdaYigesVJiLDDHZF68EEGgz9/XwZJy+GZlS50 4HQInhNRAQ3Ok58gF51HbEAFYWBOP3opDBEBOTxLDO3xwaSY9YYMDMELJZuCGHiAhz7Mrn+hwYEE ptCtAzrKBcejQwiUNzcu7I+CuAmD/eiAMPxdIQx9I2GDUuCDD3jgWTJIAPiGQIYUjM9KOEgBGYYw vQTIoIZyiIAIJOhC/GQgaOgrlu5okLcPKiBi8ONCBybAP5GVYAIdQEAUpxixudFAeEl0FAzxEEAh DlEMRdzBEHyQgRQwYYKSCYAdUpABH4jgDHnwgIgi5UAenOGIRSvj/3lwcAYhpgF36uIgF7TgQTB6 zgAnqIAVJ0CFLIqqBFTgov2IYIAUTnF5lmShIZnFhC6IAA/5EKAap/CsBNxBDncgRRrOgMszSMAH vOwlL/GQyzPwIwI8oKUYYjnESMmBB16QgAgywMhT5meJVfDAQozGQRpcAZJSBCMSQmAAImiBJzQI AyalQyDXdDIMNPCiFkAZSkl+kw5auEI5WyjNheEgCXkcwhDwsIMdeIEUxGSjHA6K0ITyQAhCiEAe cOnMN2YgCTvMZ4PskIZnLZJ8LphAOytQASJ40H1IaMEoPReCDxqgd5QkgktPANMryHSmNEUeTF3q UgOsNJQp9U8KW/+gvBC4FKQIGCM+LYrUpL6JDIq6Q/qQaptO0mCqCJipFq56VZHSYatc7WpXxYnV es50qmOkwm2Uita0qgqjU5BBGhin1rjKda60I0PQeHAMuup1r3wVGUY1WtG+CnawhBWVKyyA18Iq drGMtRITPiCDKaQhsI2trGUvCxoReMACdwgZZj8L2tA65A2QTUDPRIva1KoWEpoVj2dXC9vYMjYJ +pqCBAop29zqlq/zQuxrdwvc4Cb1YtDCrXCPi9wkzqsKuEiuc59LQYDJQAzRgq51aQcuO9SiFmTo rgi+C97v8nKi27WDHYzLVzyIwQKluK57RYaDBIpAAmkYKA88cLr/tq6oCvui4XTv4IEAC9iPQ4yl BaZ74GcF+BYf2AEe4EgMpaZACCuq7nsvzKwAbE8CHxDCHWi1RlryIA8fGOQRa2He/UQkAOBiQi36 KVAh8GCWapzuiNOwyzmSUL3MzR6Gf1ypPgxhB0I4XRWmQMsIeAEPZKAoHQcUACbAUAJ5mDGIZemF QWrQb30QgsCWBuQw/4t7EWhrApbphSH0Qce3CsAbutC6YgoxB0KQABkou7AA4EGIQtiymP9sIjuI IA0NfOAOoAmzJPhgesdMgOJkxzDzWUAMQ3gyoC9tHtZFgFZiMGIKLL0xHPRBAh9OAAFFAFdj6blV QvAxpl99HiaI/yACCj6D+CjIhBjSKgF58AF6HdUHHkz6qbAutnf64IXXHdqiAfBBHgZ4Bj/zyYJi 6JarjY1t0gmBz1OKqx08Nt00XFtIS7RAE7ON7snQNlJ5yCtvg5aAHeCZQIhs1Qekne58P4RkzHV3 YVt7B38XqNyRA02Eq/QG9Noh1fqmIA68MGkLV5YJGYUWvXcgxA9EczIB0IMcEK6CPFxCBio4TAAm 2/CF2QHidwAbZn1AqzPcx64WKLh3AqABTi3pDUYQwiXwIPKJRGAJ8075rSDOA3yDlgxyWJR3MDrE DzBcNAH4wsd3rgKfh4YHYDC6ukRQhTtsXLWQmsJvJ+KDpl4Tev+HEwGUqn51d3wASim4ZUUz8AE8 jG/Ij/i2F9YegA/4WwKMeoMKpEGG8D1i0JBgQkDxfbi84sMCGvBCGn7tdUoxoelr1+2W+pEYO+wg 6lOfDB5qMCYwqMEzcC+EHJZwEBzIQQNGMEINumSDFKzHCCr4Au7dUHJC7EAPKlgDGBYAGSas4UOF WMACCPGGJfBADEswAhgscECSPyICX6j9F0BPCBFYofgqkEEAUmD97htB6Zl3lAjcEPTj4uBB4+5E 2jkrcNAk4Qse6AMe3QAG4tB6ATAFX2AfcqAC4pYCPLAGMmcDbqAQKbCAa/Aqb4AyXaABpeBDVqAH sWAHKgB+NqD/AzoAfV8ABlXgA/9TA1ZgD2KgB4UgBEbwARKYBkugdSmgAW6QQ0OgB5ySAmIABnHU frHSK/knXGegEA9BWlXgVqUHGhKwBqrzBhaQC1V3BwFgAWqgOikABjvwCGLwfB+IezYgBo3xCF5g BIPTBxZgLx8YgiMIfRqgA1DSB0sgDy5ICHZQA4xCCBJQA7HAA2oAJWdgBPbCdUMYKxBXdLuVAZ3B ED7QdAGXH0lQAzVADlsWADVgAW7wBeNzBl+QaiKwBKZQBUsgBhGECRmgAWogBKjWdyD4CHAIIrD4 CFbAKXjYChrwYL0kAWBwDDoQdzbQbLFwB2CAeYjoJTtgAXRE/wY6kAtM4AYEExoS4AYkgmQOEQAJ 4CSW0CsysIihsSXf6BAJYYSPQFpDdFoDIn5GsAZf4AaMEgALYARqAAZmaAMeYIyPQAZrEApJUAXF twQ68CSWIAELsAZroAcW8CpuGIskOIvxRwhu8Hy4mAe1d5AXuQasoALjAQnFeIzIuCQ+UI2aMAQF QBApsAZjGBoRsAbi4Aby0RA40H0LUFE6YH1jdx4siZOHQQZu4ISQiFjlmB8i8AEWoAcySAg14Abz pwKqEwEaUDQ+YATpkwFnIAZqYAQwaQlD8AGcaATywJCFIIuGp3ViWQVk+II2kAYqcAb+5JZD8AZW eAkeCZKOgv+FnbeVa5AO6HcQ3pEHKrCTmtBxWdgvGaAGVQAGTmgeQqACinkYDAQJtIWO4nhsCTA4 OGABNUAI/CeMC8CC4acBEbIDXxALA3OGaxAyswIldqADVmAOSxCCVuCQhsd8hVADPoeLGRCEkKAx B5YrU2AvdFmXh7IDwRgJcdkKepl7SAkivNkOTEBZ2oUJ7fCX4sAEDKddv5IE/IFzdzBEkMADTtKY hHCdjxBfkWAH0aRhhHCel+BnjEki5nUJ69l37SCfl1AFXRB+TZdYNGJ4HGkBDml1hJABRgAPOLAA WskEC2ABhNCaUPIBS+BnfWAEY6gDDSqCGGoDeLAEblCCemD/H09pCrioHnMIg18wKR+wm4QweyRS jMPZKAlQjkMAfGrgBSKgnOi3A2cgjzrggDYgA1bgj2DwBQmQPW8gB90HCpBwBpqyABwGmDZgBR5K CHhAeUawAHfAOGRQAA6IcxHwieOzAHmwlowji4QQAWCghgkABkbgBulDiGlHfFVQIQEgBPK4AH0p BGDQB2KgAWDAIo8QABGAlXnqejWQAYgJBnJQemkAPjW0Ax85IDXIWXewHgSBczo3DlNZpUagA3dw B2qgB7+QASvoAd5Di2kwHmkadndgBQZICB9gBJxlARaQItAHBjqwALJkAcyJi61wfKBqAWBwEFi4 qHcAgKkQ/yayRJkwih9voJWQ8AEq0C084JkqsJdgYAVZ+mwGSggyoJRu0FCV2A5JoAYL4FAJcHiF 4AEqQEAe4HwaIA4LQKV/mQAM1a4JQJ5o8As4xwM4AAa2QgZgkATTyjiy+Qg8oAIa0wdyyFD/yCiE yKCk8AWfSQjD6gHfEHKEIARLYAXMxQNLoKEBwIkjho865wFLsKseZgT6GglJsAAgwydWqgEaMAUL EQBq4AGPUAU6oDFgBwZ6kHSP0AVigHpu4IWEUAVp6Q4AqAcJUCE7sABfMAVvUAVUygQacD3r8aaF 8Ks20AezpwEWcC0BYK1jmz52gI8LIKnOmh+QaAlM8AXjwf8EmpKtasANXrAEuZAAa6Cpb1ADV5cA OhAuH6AHk0IGKpC0NlCq8iqlHhqPtWkDESptOLezOqCpPOCajGmmDjkNRBeRGmoD1hoLsxB3Q2AE yqoC6ROD9iIEazAea/kLeVADGuQDYEAQHsCc4yChumB+jgIu9/ArbMaes8NikHC894Be/BG8xcue kPC17PlrxoUDoOa2+bEtloAHX8BIO5Cj3voINSByMqABqRYBz2cDNfCjSSlzhNqRUTql5Nl3LOlZ lqsKHUgIMasK4ymCnju6oCu3TxXANlAe0GcEQaeNj8AE/acK66cO/BiROxuLHzJ74TIEyom8MuCY c+UGonv/venSBy4LCXKgB1SCo3u5u4QQvzKgBpAAhUnQB2BQiTNcA37bv5BQnY+rDkFTiX+qn8ir ATsbw+UwsLnAuQ7qvyFLInigAjRcibBLwGvADUlQoUmpqZBwxAQKwXr4BU5sBK6ZpFCCB2uQf0ww BdarVIjJlh/sL1UbCWLwBaz1vX2pwg3Kwi5sBAk0q7EUS9WAsI+Qw/FLwMfHWSIQgz8sqEHsoJxi rfaQxWfKuyQSJv3Fx/IwC4hMxV3yBVf8CFlsA/sYClmrA3ycODYQxoUwxvmXDIWVB1NAbGyMLSMW CaNZNGOMwhBpA+gKpJp5hi1sB7p4CR7gmtsHvx6KAz34/whjjMiFYL/jUAMBYAUSnMV//LkkEsO/ dcmFkMkXKwOCCpf7C1egrMIc+QinXKVkHAngAMvrnA0j6Qla+wgyYAR72aGLtwTpMAWpG4sw6QZU moddK4rXpB4BqMN9sAZ8aAMJYAQu18w+oAE8oAcLkcVTgL4RqQEas6uPkBC5kM2EsM33OzhjbMT8 +8kQfApqUDRVwArmvKHo/Ag+4MHsLNOuEwk80HN5lABfgK25pwFfUAXPFKGC28Th834oSghS+dMK tK29WY8KZAFfwL06LIJqMAQKJM+72Wwa08wiqAIWm8VQCDIiAIad2Id+y0sFaaId3Q1VbANMsIJV /Yk65//J4twNFYsHGQC0ucDSqSyoFvDKMs3O91rTX8AhMrADJpl7a1BkY6IBV/itC5AGhB2Q/jYE mmJ8bqBBOACEa7AEd8CA4rCCBGrZY1uRMkcGDdAYOLAphcADBTAen+0Pd5B6xLQGcCW17AgGGkwI aUAhhZACBVCWfTB+xicG/AHbR92l6gB8HGIFC6HQUCIBBbB2BATY1V0IONAtkcAEd20OZ3A2iDQp o7Zld7zdvzVfLpd7EmAKKXAG9jAETzVfKKNm3a1B3E2e0VYIo0YlfYAH4S1x4Zc6nkA0zHwGPpYB /a3REmcHZxBNVVkhB26O6UhL1k3hzCAD5AwRd1xZdjD/BRhe4TJNfxNRBbzMWO9Hxx9u3dSokg2R AMOsWDggbHiJ4tWNpD8NEQGAxmklAeyV4zN+vSJgbkIJWkPwLOjt4x++Aysi45iFBzX010fu4xIw XWCGWW+QBtP15FAO5csls421XJ2l5WGOCZIpA4o3WGQQMKbVrGLu42g+REJwdkjVbDxQQ14Q52yO 5/rYylNwB0PAfknUB2eQXztg5Hlu6Jcwah5QQ0YUmLTzPzwgRDzwzYdO6Q9BBoRmY2eARKNjB4lH PbKk6ZUu6odRlbRmQ2CaARt8L28QQ9M3XUIQ4KMu65EhaGmwaTV0B0JwBmRAvMwSXz7ADx6AQW1E Bj0+tOvHzhA9BHSu/l9C4EZ9oGKHggNMoEC2Tj1M+EBptp3Izu33EWUZQGX31SpHtkxk2pZZEu3m Me1d4APAlAYyJiL8JQYewEx33evdju8NMu0pQGYRAGCYkkwrgik8wGAf4AVZRngJr/AJvwN5QGL5 QPCYUm0YNF3zfgt5sEtyZOz5zvEWMu0w3AcKNAQScPBCsGAEj/Ipn/Kn6vB5hwfPlAF94GQdT/M1 b/M3j/M5r/M73yiBAAA7 ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/D2RServerArchitecture.gif R0lGODlh9AEDAeYAAAAAAPv999/j3ru3t5mZmX6AflBOTtDU0CUjI+vp6aiqqszMzBUSEnVsc4eJ ifD17z0/P9rX1w0LDK6xrr7AwaChomBfXo+PkOjp68K+vjo6OvL19nx0eoSEhOLk5e/v7x8dHggI CLy3uzMzM93Z22ZmZrG0s0ZGRdfc11dWV+js5oJ6f46Qjff397/CvtHT07Kvr/Hy9J6hn6WpppCS kurs7be6t+Le4IeKh8HDxPX38bW1taqnp42Fi3d5eN7e3u3u6ebm5tPP0GZmZuTm4aOcoKynq0dF RW9xcf///8PDwPTy8SkpKdvd2aWfoxAQEBkZGYyMjCEhGdnZ27u8uIV8g3hwdeDh44qDh1JSUkJC Qn+BgVpaWpmZmb29vdXW0q2trXFvbpmZmbW1rU5PULi5usXFxbWwtJOLj6WlpaGinnNzc8S/w5KS kFZUVD48PImJh6ysqHt7e11eX9nb3Pf3/9bS1dbW1kpKSuPh4yEhIUJCSiYkJq2ttRAQGZWOlCH5 BAQUAP8ALAAAAAD0AQMBAAf/gEmCg4SFhoeIiYqLjI2Oj5CRkpOUlZaXmJmam5ydnp+goaKjnTEx pKipqqusra6vsLGxGCw0H7K4ubq7vL2+v6hNHQ4ewMbHyMnKy8yUPzgsQc3TrgHW1NjZ2rvP0dud H3TidFPl5ufo6err7O3uPxvf8vP0i9fO0NL1lxQTXv8AAwocSLCgwYMIASq406Jhw30QK914Uaai jYsYM2rcyLGjx48gQ4oc6VEIiSWXuumLKKkFlTvaKAhx+JClzUVLykTZ4qCnz59AgwodSrSo0aNI kybdgsNEggAbNrQIAEnlzUfWWniBmS1HjiBBPiyZerUsoTsdtpi446Gt27dw/+PKnUu3rt27ePPm vbOjQwEzNKvmM+tIK1dsFMwQIZJgLFXCVxesSePhAwawmDNr3sy5s+fPoEOLHk0aw4cgCtbYSNC4 JqMfHToUg1xogxmBE3ZQSMi7t++CC1oQ8tqkSVjHtFneWWPCMunn0KNLny79g5c1Xj58kOoowIwK 8ZIPSgDmDolxP364W8++/foXYFAOyuElQoQ8QJCLrxejQ5rT1AUo4IAEgvYBGHK8kEcNMZC1XyQY mPAYNRuYcMp8VLxwX2sTPvhNGbJdVuCIJJYYnQNp3BBEDQ566EgQEmbzgYXDlaFhHhy6uE0AOjjQ nIlABikkZtZtYQYJeZjSof+Og7RQA2us3TGBB09CaeWVWGap5ZZcbincIDNeKEgOZQhxxw2tfckk NiRsYYeIQ8YpZ4AYwHYGCT98EMOSa9KhwA6AAlpGoIQWauihiCaq6KJgLEBImDUKEQGaY6m5JjPW LODAnJx2Kt0FMgghRFgtXvoFBQHQpOqqrLbq6quwtroABY/SOF+Zk6Z56TQN5cACnJ4GK+xmBBCw gBA4unZIhWVYetULOWizQLRg2jomrpQqu2syDVFAA7DDhhssDTSYYcYPQYylCB0FdLBSWdBKS60g kN4qabbObntMC0tQcAG4w9ag3cAb1PCWaQPrGQMGByecsLiakWsuuuomYlX/WVMJMS8109YqZhJk momvvso0ZN23EAfRnwYajDACBGG8EENbG9DAsstvcJGGwG19QMEbb7gs9Al31JByEOQqoQSSH+RL yMVXNdRxNlPTay3IZZ6pK8nImOwFyhC3MAcADIAAAgAA6LHABx4EgATZIOgRAtpvyOxBhQCEYPbe IxR9NLkZHJlH04pAfZPUG09TdRL1Xivy1lwb0xAQVIAtbgsWAADDwgsYAEAKLXjQwhoApBFDDS/I MAIATBS9wQ4AWLDw0ZsBnsF9hFs8WFlRLa74xo1j/Xilke/bAuWWh4s5ACa0gAHIrIM1eunO31KD 53NEBXsJTmLgPcDh2o67/9ODGG5T74k3s3jwIWtNfPHATF45+J4uD8bMGygBgAZGT5/GBm7ZwB0Y 8AQhBGB7jBsY7cAivsGRTxDmYwn65OWxSLlPW/DbhfySN6zleSEJzsscEkLnPwBipgV40FwSYAcF obnMDABKWQNzhwg64CAK77LJEpZgLgpW62PtG1kGfcEv5NGvUy0owed8gITVjYAOBiuhBzATgywA AAwrBMAT9hY3GNJuhg9kHAtwkACz7LCHVAPe1YIIuSFqcAlGTFkS0UbHFPBMdKT73xTBsgEyAGAC WSzBwr63QKTRIAO3c+AibnADwpzRDD60GhCzJkQ3vjGOYVMiAaYggxAwwf9ueCwdANtSgxowAQDR 2p7zCLlAMO7qkZFk3Bop2UZL4qKI85Nj5sogiC0AgA9TmNn0KhCDPKwoCVEAAB62AzvZFTIzrrwU LNNYQXtdMIy2ZAUuOSis5U0gBipT4gk+wCLSwQCEMbhCB9BWBlM0E5zPZOAhE0lDlrzgBdgUxDSx sb5ZDg+D2XzFNo/IKfvNjEFH+Nwt3kaGNayBDAxAmwxChzdnxtOQiBzfVUzQARl4IYeG2CfH1DjJ f+YzoKgYqByVeD+wfGAKqwtDAHxAR7QxIAUU2AAf33lRjNITmwKYDTa84IAoOIAFaVgbIkTaiBiQ 4KlPLSMhNgDVpwaBTzf/wFN6thqeR/SzpNdE6S3hmMuUvYAC6CLSFP4RhDskxlxmuIMpMvMDCryg pz7VaCLy0IEoSJUaOXAAuWhgVBrAwA5d1ScPIQmJCKxgBRyILBZgoCYSVKEKkeVAFQjAWEG04A+Q zSwHrHAYR3zVgpUUq0DJyk1hMYhhmWHQaTAQg4QZbTOn22M8o4mIZ+CwK4IdLLl6QgAbXOExTGUE CVYABjvYgQ0E4MA5IVgFIzh3AUbAAgfA8JjP/kFU4BXCLSBxWmumVrWtUCle1xsdiZ0rAdj0wFFr 8Alr2Pe++M2vfvGrKgoEV7jkYkFRK2AG+LZgAZ11xHI7+wE09GC8P1gB/xsIEYQicEAEnv1DETBR XseFFb2rxSR7RywaAkRBAX+iQg7gymIW74AFLCiDV2ZMYxpPAAw4zrGOdwyGNPj4x0AOso9lQOQi G/nIRC5WsQDMZHIZlQUERuMjljvhQTgBC/qI8Acf9YcHg1DDHCYpamsJYlWol8Ro9kwaosBmB8Tm zQWIs5zj3AFybWHOeJ7zFvbMZz6/+c+ADrSgB91XNhv60IZuMoCfXAEEJ7gRC24SGtDwJS0bgg0c cJR3q0qC8ZJXzOYlc5lTylqCppnEJiayj1GsABhQ4NWwfrUJYGyDHMS6xbjG9QJ2zete+3rXdwi2 sIdN7DtAsUs6UTQNev8iAyUY2HfKXUEGovIDJ3AgA+VbwZYJIQQOTLgFBMBCaEf76EZ0WHgfHvUq znzqdssTkUhqkCLyAA36YiOwTC7sDn7wpeQuggRYCHjAe5CBCVm6EN3+9h++61w7CMHen66mh8+r blKwO0B7UlUM3W0i200hSWGM4DKU8F8BI1WphPC3IixbhDOAYbOFODghFsABSH52w5c4NxvfV/FU XHw6H5BBCcJQgqLLITscBxJvD8FXd2WD5Bcg7keXuthIRDoJGeAADwyubUM4oQp5+DIB+BQJndOS 5z23eKkJ1AIr1jRvf5iZXJJOnaUfwgY7OOkvvFCANpQnjCpPBJUHYQT/Duwg29gmRNaNkOGx5xzU Exd12j/xc+m0gAsAkMGuKZA5PfzgMnNlUG5Z5BC29UynVDR9ZTbAsLvRJIakb4jBTh8E2o5eVQYb kd0hMqu/KiLwiBi8Zy3M2AgPoCEJEAIPOPAHe3/W8ZYwu0knT2oRB+jyAMB202IABQnc4TResEEM fgAoIYy/A27IwhpegHov7EC3OzDDZTCwABO8gEEzSMEJyPAXPk6hAFmQBXLwfW1hBiZgNGVgAguQ Th2AByfABZtEIrvnIcB3CHfQAIlHL2hgBZC0XFUgcBywAk4AcS3QA39AdhH3Q2OGdtQHCpUXHdhn cysUAingHEzwBA5w/zYAAAdBsDp0BAVeYApKJANR4QUAMAKl1Hao1AJhAAAgkAV84IT8VgY6iDZ8 8ALakUId4IMl0IP7gwdPAABhgHoEMoEPUoGGEARGEAGFkAcwcAYFcwZyKIds8AOFEAAikIGVIH3p 1oIuuHYDgn0pEAZhkAISMAJJchk+OAJyIAcLMDZusAAv8DYIcFxpIIYNUQB54wUt8AMgwActUAYA cALPgwFgYAE/4AFnswV3IARKZAEt8AFuxwQ+UABeoEQ0kCo/EGcbJyBmuB9oaAx8SHF+yAkvCB1i 83Z5Mwd0cBqrQwPcsQBH2DS3kAIAUAFJ8AIhMALaMQIgEAJykATSWP8CSUAAAECOLdAgNbAByXQB hKAFEkAHSugDTSMcEAAAtBIVZFggvygewQgM/ZRYOwdQxagJx/gc2CcDB2AuaXCP3NODT3AFp7EB FXCOLcBHYICJNaABEnAF0mgzTBAA5kgAIBMCIWABnKUy2FcCHdCIUaABIYBPnrMAqNcCNMUHBbAQ 2qFbA9KPH1AB/2NGVUdNgxADMGAGdJCKGxAyucKCBbkJB0ka2Kd9t3AHTwAFP1ADI/AEftMCMgAA PnCRKgM7btAgNEVUAOAB6/QCNCVeH0ADUEBHI8BL1qiMEhAcnhOEYFEDV4B5aBMCXOABpvYc/UgH sSFUN/GPv7A4MTD/AawGBiZgAl5wIwnQIHr3lJEQlaOBfTtgekYjN2uzlX5DkZjIRxNwjlFhAgAQ BVrwBtBTAEFzWxswBSYgB1rghBgwNgSgBDZQERVxBTGQl/C0Ih+wADIQBnqAmro3T3rVW7tzFYrp C4w5AbkhAnmYAQtgB0iSHwSJmZagmaIRg0kQFUmgACGAAN4jmkYTA6I4AqbwPJrkPFMABXogARcQ AFrJB0/APYKpj9ZgjWgZBYKwAY9hGsJJJKZwCncgAXwgmPzInIqkO95QFtHZC4wJAzAwAIi0axqC LttxD94JlYAoINjXAQqQBjJgARIAAB1wkerpUreJBFeAAckEBVOw/54noEX31wKaCAA8YApgQAzx gEIAsABTIAES4ABFkzolMAUbcKC1twUTQDgLEAJa0IsB0o8iBxEVygsL4AIT0gIZ6gXmIip4EgSS F6KVAJ6h0QJuoIxPsAWlFAQIAAD3BxYxkANxeZV5o0ei40snAE55mjcLwCI0AABQwAVysDol0DQE MDcSUJ8AEI8tkFDtxEdOhARI8ARP0FIPmlER6pwTCp1DiQ3wUQZeQAEL8AUwQAVKsGv2kQc4Uo+X qaaNwKagUQM7oGTFEirOAxZpQABphacLUAIu4wbNghk1IAQ0kAOz5wFAOX93QANawARM8AYEMKe2 UQItowFhUAbeY/8CBHAHIoIBFLAGI2CtODWcZQih9WQIW7oPXboLLzADM6BjO6AEZiAEdvADONIY Tmmr3zmiAmKZr5cZUbEZ26GP+7gisfgWDYEZGJCOCbowbtEgCZqOeOo8b4GxFVsiWvqciVmq1PAC rdaqVGAuxxIBJICmO+QQAmuMBCsgcUF3SueuYSQMUYCYOkSy02CygIJIZdqvWbmw9hWzImp9Njti /RgEteBpIytlvXA6RkNsexkA8LGhkvgCTeCvANudSEsJuHQBS3tqBHABoPquhmAKjuSzsKBTdLAA SkAFJsBjO1YRJpABr7oA9sFIaKokKBi2YuskRFW2adaPyTGvm/D/AVcgBBRQt48JBhgKKANQuZZr uV4AbHQAFgmgMGAruJMgewvAioNpuBADGxWQAWzwcWpLgW5LChuQBwvgBY7Jahg6uTtwuYiESEqj NCorBOLgPdoRGKALlc5zAx1gA1hqugv0ATlQAGCguqxbq6QqtaLgPHbwuKx2sjBAuZXLu3D1a7wm KRGAp3tytMXbCS3AGhWwKczbUxhALjsQOEhSMWuiuI8wfgtgA2AQubj7vbursuMbXuDlXHjCGlFx X+mrvqyxANC7vO8rLh9QBnIQB/l6LukSRgGwa4FbD/irCLF7ALRru/87AP+gr2YwwGZiHlC1VS6c VmLxuQtcCQHw/wEJ8ANU4AMU4BwRnDIxYAZyQACAksLJEnLtAlIRsUNCAAZCIB+XoFPQUrc5hru5 q6FCm8IcqiEsSwJ+ixlaMrwwO8OeEAAxkABPJQM+AAOmUbo9XCKmUQMU7He5eyxFXDgiq0MfILuR mQM/sCeQ4CQe+bg6NoeVCxC+u2uiEmxPxUgqwrmd6zCQ/LJT0cFivKYfQAQ/IAQw4ANRgFYYUEqg HMqiPMqkXMqmfMqonMqqvMqr/ANmQAM+IMQ7QKZ2QAeVCaKHEK8enMd5YAdmsAOQmbl3AJym4BA7 FAR0cAezawM3hmPd670mfMIojMh2YB/pYUysoR0VGysOgb6VLP+zQZDJQrADbdAuBIBk6JzO6rzO 7NzO7vzO8NzOBNCSBXABBMADA2AuEZCVfmzHo3oTG3AaNxBsu5YBCRiZCJ3QUoxjCD0AVPDQVLC7 KIzF92TN/orNj6wdUtEQ+9XRlPzNlnzDEbBrA8ADBEADbZDSKr3SLN3SLv3SMB3TMj3TNF3TM10B Jn0BbEYAXmAHrKEfEorEEJGweRABL7BrLIZI1nm5lysQu6u6bIDFx8KvFs25BLPRMgzSqxAAS5DH mSy3SvAPTD3WZF3WZn3WaJ3War3WbH3WMFABF3BDMlBgjqDL9GAyCZBVwSYEvpZrfo3F4CVsW9UW GS3Jk+zNWq3/C6lCTnlAAqLiaGbwamww2ZRd2ZZ92Zid2Zq92Zzd2Z792Zx9LAsABhfQATigeflk 1/PQEEtgNFllH/d01Lzm17+WyCycHo6s0avy0YkdC2R8GkUdAY8tvsRd3MZ93Mid3Mq93Mzda/d0 BUHQBGXQBrFhLCF3xzaRKl0NIIwEVcX23bftr16cMFFBE/jV28hgDVEBBEAAFnnAyPAd3/I93/Rd 3/Z93/id3/q9312sHVRRAxRA3R3AWR/zNEcMGQ1hCuzt3nnwA5xmHxBuH03AyI78yDtUKYeNy+id 3glOTnPaxp5SSpJML2YwzwO+w4bQAinM2/NwXwleWzYMJZuB/yW63SobLg9ZQRMVu+M83uM+/uNA HuRCPuREPuQMKxWIPaDGGRs0AK5rYl8OAeMDM8qRXCn6deM4DuXcvOVc3uVe/uVg3iod3AJCUAGx cQE7INTJwV9brsBYTsNX/uae0AIvkAY4sAUsAANXsC0efd5yjggBwBrvPd9Xq+F/DgpTEAcOsAVR AAZ2eOhDhHzKXH8VwKux0WeYvmcOwKs8kAPH8gM7NCFuDumT8ANgEAV9NQMRwOKkbhbr+wL8G9d+ MQz2PAMKMAGS+Q9CENuxbQaIZAMw0L8VQFiLvgWxIQOutrnU2+qGkAenHgU4UAEvwOrMXg+dmANp cAF7FgUEoP8AZCoE1/yvCaAZNdsZV3AFI60EOyADNJAWAw4DC5AuSZAqYVzt8xZcxx4c9k6hC5AG DlAAOEAA8H4HxpQZeXDuV8Df8o3w0J0Zju0F2b5nNLADEfABSb7vMYcDF/AFr1zdC4jx+0DmaZAW QiwEjQwWCa/wKh/fmTEFSuDvBUADNtCM/FLvIN8N9OW8Jr6bUAvy2PABNvDvPD0FmDHoK3/09o3y C6AAOBDEa2PzGA81PGTibeAFEOfzzLAENmDsExAB3uMBSB/2++3eJe702cwdUX/HG7DkdWYDao71 FhobO4AmbSH2ds/fYLEABBDLN7qOhg7pIifyd47mbw/3stD/AmCwBjyAJkZ/946v32BhBm52LoND oPauy3cwA3CA545u+L6w9wXW+I8/+vmd13tfBjiyBH8v54aJAzx7CE1w6oyuAHTg+bJgXwjyAnlN +ry/321RAXKgBP2aH9T+zUEnAwVuMROwEyhyB8Vv+waZBBHgAwXW+9av321xARewAHdAKs9f7Xmw A9oe7fgE/evWAmlAA0GQ8tff/vWdAGYAvWZgB6Fq/oWQANOd74ll/y7YAlGwA4CAcTNIWGh4iJio uMjYSOhAkLHwA9SSdImZqbnJ2en5CRoqOkpaanpaWuNF09FBYBaDKjtLW2t7i5ur+ZHgYCLoGCw8 TFxIhxMF/+YldPUREKAbLT1NXZ35YUbQSqD0Yf0NHi4uzXtxEXRVrL7OnqDkE8UzMAn0XBpQk6+/ z9/v/w8woMCBBAsWhDYu1JIF2jq08eIN3BKDFCtavIiR4JKEnp4FyUNjjZcE7EqaZBTkxgU5cIqA UXInQQtLooKAidIqp86dPHv6/Ak0qNChRIsmu0Frw44yNG21WCCjFY0dQai1yNGwqNatXLt6HUpg QVOOlzzeoBGlgJkE6U66PZmSgJwtHVzClDm2UwsFPi6YWHDnheDBhAsbPow4seLFjBs7ZryDho8K EU81KdDBg64WLyrg6MDCRB5QPyqLWtChQJocj1u7fg07dv/jHBUKOBBCNlOAID+ilOFLBUPKt8SL JYhAQ86FVnbvBJkJKoiDDgv0YbiOPbv27dy7e/8OPrz48eI/1FjgYMuVJNBJ/cDBoqq0LzPSH/Uk Q0ZeT2DWgPFgHnkCDkhggQaO98EPaayxQxL2JORRb1RN4AMBMXlQXIaMYOCBF6m10cYWLYFhhnMb INTJEh3QAGAQLr4IY4wyzkhjjTbeiGOOOu744gcYyDXafp+8F181Edy0RRRxkLDJHVHgwIOQmlC4 gI88XollllpueSMGH+TAIHtSUmNWFCb88MMCLMihwBQJoKNhnIMIZ0ZykIC4RQ9pwGDGFBi01wkB UQTBIZf/hh6KaKIwXkcDDR8sAShp8MlXzQ0wRLGFA2l8geIMUdAA5ZhJCLHGAjEoimqqquL4pQ8v zBSpNWWeOQURRFDhQAEVLOCBcG3JaZKLdJSRnCsEEIBnPGcs0ARenrzgwx01rEpttavW8IMcXiwB 6ShEUmqNBzuwsAUOFQgRQG/mXIADGChq0kIHCnxgbb32GvqBDFF88EGs1TzzZmg/TDHFDwkQ4QIN BUQBgxB5JJBAHnkAO8yLUyhRQWqQHHssnm3AIIIQlPiLCQGU3Ytyyjt+AIYDP9TQr6iXfDtOEMS2 kkYFLDTaKA4TvIvJAgVcIZzKRh+96BRqAQHEEg/KGkDA/7QW/AMRTDcxQVoOzKDEFA+/ic6vFN/g gQcQ37DAAATkumJ+HHccIgFnLHNDJVJisEV1SO99dA0vqAUxyZrQnFANSqy9M889wwB0EhWczHfk KNdwbBBAxAzOM9P6NTDVtqrQ7wMRUKHNFiykQcUCU8goscQmlZ3dDS+YAYO+WyRJgBpppOH223gW MYASduSBOSeoeSB58vdGocAgH5wo6aC5xVDBp4r3bINuAVxQBr3Kf6/qBzs4EMHDG8h8i+ZBcE4w mrYSkc8DNH0wxQ4yTNfBBQQoY4bIP0jMHRlhB2Jgu8IV7rCAHNggDQRgQU5YQIDdKUABu3tcBd6G rBDJgP8KMCGe4MwQhaKBb4SKogEBSECCGsSgcZq4QgcckIDc1OB613NAGTKRgA6YYVok7CGXVEGd H3ggBi1goS7Uxz7P2Sp+D5AfimKgggV4QQFtiAL+HLCzCkwQDCYwgQ0oAEYwUmEHZAQDGBRwLBbg rxUQlIECJgBHOM5gjjOw4AV9F6IKZKBEHtzPM3JwARH6cJBYapQQhBCEGhSRND/ITRJ2AAcaKs4B VLhEC/JAHR4ScpM5qoEZtpCBL7xshUbEBRKn5r4l1qCJ8iviM96lAx2o4AsLMIMNFHBHnjlgl7zc 5brMQQAZzCAOE9gBFY55zC7GcYJ0tCMG8aRHPhYvEzP/AaQgUxUzWJ3KRSqMgTdjUKgYebMGyHtR N7+pyUWdD1be69E279WoBThMJqV0JCZqACJJKg4OSmDPDTLJyYDeyJMdWEYEvPS0aZyyc6mE3yqb OJNXBgBWsawoKx/AtBcJ4A53OIBHD7CAjy5gpLU0g0m9gFIb2ICMO1imApppwWeGyAl7vEMfNzET CgSSWi2gwBq4wIUSOCAHwsHAAsqA1DLkoAYbiNEVkHoHERo1qUidQgvEiQEZlCAFc8jbVV9khjL8 AGWNMulYu2XPT5hgYVFggVvdSkM4mCEJPwCoQO8qI09uYR4vsJzgTImP9aGyaqpkZURfCasWxLKJ TFOB/wreJ4AmSHayX6gsSEdq0sy6wAUpVSlLXQrTx8l0CzSVpr9asASdXjNRH5ADAF4LWwBEYSYl iC0ARlCBprqoBQR47RpaUDYPtAAJtoVCB94ZgwVowLZPcMA2Y7BcM7TTWmU1w1nR50gl7EABMjgW Dd7KyyiItwNKyIMD9IbX9HLzkzvoXyL/mr7AJrGhTGylRBO7WIwCwbGQnWwTONpRj5I0sybdbGdX SkbQztGZeCRtTW9KzRZ8YBWrPdQGemtcwPBADlAowURrO4cO+GC5AODBNj+gBQBIgA+E2i1xuZAa Mrw2ChvwALaYAAANpOEOXqgtAAhw1RhAAABVgicN2P/ABq/1K62imIk38xCYke4ADHMkwAV2EAX0 qhevej0DGxZgPuzOYqHtI6xDDevKZ+BXB4zd72NtFdnJAlikmCWwgb2gUgS3FI7MXHBMG1xam07T khKmsKpigAcAyCAJ/DrfHczwp9qKgD0x2AIADHDVDyzg0rWdQI2FS9wzsCcJvR1BPlqwBgBoIQj4 iAUNAKCHl31gyEW2V6OQrGSZDYLJoJjoD8xw3nRuOaBd/nKYoba5wb6vvodVM0XZrF/+wtm/cxZw nTXLWTx7NsF8fqmfRQvoBw9aTDWgAg0qjK8hmyAJIsyHcGsLhhh4YAObHsF14gWACngBAFz46nAB kAb/ecfgBSEAQWk8wAcAUAC4sNtAitMgYVpPt1qNykAGyrdkT2AyCjHkdUeWQAK7DlugeoWBEhZw gwScD9mCZaiZmZ3miT67zdImQpwlW+3LlhTbB/5st0N7R47hKdAQxsRMgGBudHOpBWHIcRnmvYEN cOjdAIBBC2qQhBkA4ARSx8AIQhBVKEDhZaAucQsw8EgAvMGbIrhtPmDUgigAoAQtEDKRJ06til/c g584hvQ8zomJfuAOIh85J0t+8pSv/F/yVXZhIRrzNdP8zTanNkfpvPMCZzvPPp9An+v4Z6HPVNyx Qi3Szx0+ISQcAHw4ARL+I+8W1HZeU5ABCABwgajv/xsPRKytDGr8b8pcAQw4zv0GwACALHz1RcdP ftQlbmSLY1xUhAM8vCRMeC0bfpOIR7nKxSyLhUaACDU/tZgiP/NoU/7m/728R6u9ACXIXwkolT9K 8azgCVIwZ6LlmYNNmxeml3SrEgN2EAYjIAGwNQI50C+19QRPkIBzdyqoVmKXYAaXNoGp9oBPAABP 4AP00nxZoFsvEgPIRwbPd3fRt3cZ1wnVZ31Gh32Ft32D1H2KB36osFC/5gJmYE41gAJCEDP3lX6N tX6Wd3lmEEcTEAdUcABmcH874ExpsBRmREdVZEW8tCL+R3TjJoCotyrPcx4mEAUJ9wY1EAC1NQIn oP8FKRBw13EFfBAC+3NGUCABdqBIqTYCeIBjbpAE5NR8eDCCLrIBaQAAboCCtVYvejd9QzIpL3h9 gyeDM9hDNfh9LOcXNxAEJ/Ba+vFeiYYb6DcT+UWE/SVnlycAbVBcJXBSZnABzDUCBTBlM4BLt2db ABAGMjB0pBeAS3B6SvdD5rQBSXAHt5cDSVBbA5AEUadbMQADtfhaFzATxAUDSRAEIwAActBU5yEB Y5dOAZBqW1B30GdrNCB9fOcJLuiIMwGJ2pco54R3WXJO4JRelLh4ZNJ4mKgFIRACTOBYKtACmviJ i2R0FqVfFaUCAsB+c3aKt1UCFnACIQAAc7AAO9j/ikzABSmAB7SYAtuFS3SIBx+JBydwAluQQf8n aKXHiwOYKlfwAhvQTli3XF5gjAAABoEYBBtQWyVgZfrTAWrnDMSVBlG3AAzwY7vxAZrIAuxWNhsw BcToTbQGTthBceS4gtTXiI4Ig+sobDfCL135PBMXA1PgBUthKuRUNjDjlVJXTjTSAnSgbRRwBctH bJ9kct5Xjwp1j0HwBkxQWwQQAJXgiewBDR4gfy/gIBWlAwGgA7bkBY71A0Z4AAu5BkDwXzIQAk+w A0pQJwBgAbPjAmsFBZxpArjEAAhgRvrHQCAyegAILynphYpSA1MwAiVQHerYW0zAavD2Ton0A2JX /xXQ0QJfN1dAGXtlIAESwBQboAAqJgMxUAeckWIp0FR2lwO8gSY/cAV5R5WLeI5XmRDAVU+EppU6 4jdaoAEjgJ54IActaU5rEJqvFQIlYGPYQgbniZ4ncAHuNiPX4QC0+Fp8gARcRpeJV4mMl2yYqAF8 cABPoAcqID+BCQ1t8J6c6QwBQAUaIAcWAFta0FeQuZBhgAIkZY1qYFKvlgLaRUZKQAPHSQATUAGl CVOitwXRdJK72IupUgNXcHshoAElsAbLJQE7QERzAAAKEIgXxply2QIFYIsz+XsuEgC9FQI78AEx QFxq91OhOQJTQC/QpWLHeZwh4AA1piqKaI6dQP8HdKEZHLEEbSADO/QJ6ph9W0kjmvZaeqAH7ykB NPBVNcAEIOAGDlACCVgCG4AtHAgCefpac4BuMeADr5UCDoAEGgCRQEhyA2qXN3gKp4SJbwAFOvCo NMAegZkEyxkCYdABCZcF0ECIABACIZZwJUCZpdhRH9oEC/AFSgAFmKmZJoqiLeUCMlYCUMgAICBe OPAZ+lOSNFp0luSavqglGAAGKeCfAAABTDFEUXACEAEjH9ABJ2ADu4kNrtcCNACu7bQBHQABJXAF KkQA1ghbFnAFMTAtNbAGaggB+ZqvzbmWJbSdZ8oJzLgDmnoLF7ZLNAAGLckJchqJdbppJ2AeHlD/ Bk0HADSgW15wBdCzAyHAAFMQAz/wBLj5AR6gAKFppDLyAUJwmWWgZprmKmZpqC4SAyO7lE0VM0Qk b3D3VRggdTJrlsJ1KkR0dv1qI/RIsPeQl56qAk1QrKwWmEvABCGQAZdQA8u1bnFwWxEADUoAAExA BGPFNEwjAJGJimFwqyZgAJc2kZt5op9FBcSVAjZQAdW6qBWgmjOqi615o4fWAlOQWVUib2XzPOEE jOQUIzw7skw1dcEVdT97VWbwAikAAA7AaHdQNjGgjJlruGX6ryzoiBcGXpBABTfwLgzLjjVipxB7 HcFYASEgAS8wsvJIKB8QtUKwASDLBNiRBMSF/40yEgMmoGpKKbgj+AEEoAFQoAcpUGvi9QFlcDsy wCbTdQFbQAc+EgUjAAV8UAJTkA904AosUwAFcLo0YrSWaAKdOnYB8KhbkASBybUnYElJgHxrkARY 6wNJ0I8IoAe2ogY+4L8+QAMosJBPAAIgwIFaQAVOyLa/OgFvm3xyu6sgGZJyADd4y5rU9KzVgpb8 Aq2q4iVpl3wZOb7URZUkkAdEhJWW1ECKo0ZRUAFwaknjmSOpm04zWQByyZsMAAUei7u9UhWpRmMo e4FQkAMzEbM94mMjcHt64LFXAAUh4AawFQYc265BEAP7NgLmIWM8SpQagAHJBQBQkGivdbKdhP+p Nmi+6FsavQkFCZAFAIAbZTB3DgINLwAAeCC/thgAjvUASkwEDzDGrzUCCImKUDACCNC1I4VSC/xZ XtB0XCC3pdlt3KU4FlyjequSkoi6NKAHr8UEdmg0jYJSdzBKiWXKp4zKqazKq4zKxZs41/MkCHsH G7EEEdCwM0LDcLecyhcjScCkhXqoI2AJLWAGt+cFu2lOicYAXEADCnAH/DJvhKgBYoEBj7oGAXAF 1igBa9BFHsAFigZ8TVcBSeAAAEAGd3BJGiqqQnB7ULAFZOQn5HnGBWqPB6qXUCAArNaTHfDNcTzH 9nAAd5zHYbDHDurHCBMHCR0HJvAFkhkEd5D/aMpLf4y8Z16wXHJgAi+qB2rA0aPFrFyYwZpsI7cr GHSANPqCQSmt0ivN0i3t0iqtT5MECWVQWcGmI7lMgiYYiC2gdUxAB/nQmwwQBj/FgT6AzD0yBW4A ka/1BHhwzEcJAHaQjJegB0wgb0wgAXMVdS0wAXdMr3lQwInEBAyAdcGIASGAx0LAoFOQjGopz+/s Xs4QDvR6ifeczzUgAHlKqbhxgfA7avNbv3rMx35cNdL2A2Rri01wAC6AYyWw2GxrSypFAcTFB2ak 0RytBh6dtxi8tyJdI/tw0qE7FG71GV/xFRcQ04qzDSJg0zP8sOnUfCf4Ii0ABhwrFjb2A3QL/2RF GwO0UQIGwIFPYAYbELVaIJIngAcSgAAjiwBQkEiwgwFRuwBJIAPXmARTQIfHLZKqFgAvIAEjcNRm vAU8sANeMFIREAHXqd7rzd7t7d7XKRhmgr75zGqteJm4EQM4JpNJkADW2CBYS9CDDQKVh3OmWLYo YAYHsAOh2QFNaKJhBQYskLYhAAejedkdHW4XbHQh7dk+JAMsMEddVH/zR+LyZwJupVQlruIrzuIt ruJekE/6ZEU0MAExMQW3jLKvDSMBUM5h4G+E+AQLd5Y/wAB8UCJEWgKyWyNC27eJ5uM4toEPCAUQ QE7N/TKzXc4d0L4hYLt38MRR/gRQ4Abd/f/d14ElnsRW4nWFvcTmbe7mb/7mcrADP+B1T0DfH6AC iExkl0CIpwoHCUcG0MADc1fQDzDWBN5+tYqKJRCiSvAFlgkAcPACLOCqYkeUYdwBNiCLFbCNmD1a W4iSnW0vUdeVUeciXjJ1/bK5W0Kne1NdKSczHoBFWEcWK3w9anQ6VXIJMswqOk4ofdvJFOAjUQoA CLAAn4bbIfsBdYABy1WoNWKowaUZ+3YEG4CAdmCdaNIrV2DlmvQBBDcCC4DWhjoFT8AHZaPeNiYE Zd7BeWUGBfBWbqXm807v9L4u9Y7v+A6LQjQHJzBWUKoAIwABd+AgSdAGlx6RTmOhIzBbjgX/BFyA BwhJqwfQBGrABFtASyZ1AB3ABBpgAzLABEzAByMPAWGgALc0QRUg8J6e4ZfM2ZlsLfmQBlkwAh0f BmXwxWnABBVAr15wAUvFJVcgRN9jpp67CegYDqAr0wTgBaNRFjE4wjku0OxRA2VgjXRHKJZ2AjHE ThjQw0N0BwlHA7sRIx9QAXLAai4ZCz0ZBklApARwfmeHAdzOjTCyAd8sYwpwVTUwZA0CnIm07vbW 7jGiVwowABkgBKScB+RJAbcBNjqSB+htJj8wfu/zOa4US4sUBCb1BZdQUQHwAP1oNUCQkO53AF8A UgQ2UkpwTPN3f15gAlQ4RykPbjIK6jYK//PUMi1pCwAM0MmvhQRJ0IoOQFvWvZbBRSPIL7NhAAVl kLMvIu0qU/RWWSQcAbpu5QA0AAPo/IhzetPiDgJIgAQlgGPJlw9X/Fol4ANhwP4lAAYt8AMSwAS9 IlxmkIAVgMNxx3o+oAAvUAa1BQgMCy0UIQBhXgdpXFkfeXoMPzVBlEEbYAAATEEYHhsKAE9yOQsE BiUtQiEjGBiVr7CxNWZbO2ZCQR8BSby9vr9JMFtmwMW/Hx8XJj9TP85E0DU1D9Qt1ru9LTo61A9A QCoq0EQCTeZNd+kH6wvtZu/vLi5eVPX1JiYT+goKM2n/FQISGDiwTZstTjKYuZPng7VfLf+WAKFC w1WsixgzwvpgQBOYKx8W0IACIckfABdaYFigYIHFIDGstajhoSaGD0FqyKTpoUUJAF6SSKupc6fG o0hj0aCRIUOEhi2M8fqBg0UQqVizat1Ao0OUNGY+GLP24U6HBZOShnySKdMqGsg8xCgTwlDbTGuS /GDAxIPFFhXqTsBZ6YOIEXczgSjTQi4BBonJxLiCAAqdtJRaaQDQoUXhDnbbhkkiRAKrl0kpzdoC Q8mCGwk2RNWaJMGFKARm0w4QYJIyZs1+jJPW7RrvADK1cfMGThy0cufS3Vl3oN0CePHmebHBfYd3 fRP4zRgfUCBBAgYRKmToUDeviBMrpp7/HwswAD4RetfQ9UJGizYoNVbTgDXEYMIWW9AwxQc10fFC DS84UMAFklDCBQBpTLEAHTDdEcUachBwB30kKsWUU1BhRZVVtLXo4gZp2JBHVmSZhdZ8V2Bnhksq DfiDjvDc0cmOGy3ghUuwTLLDFkg0ScMPMQy4wR0OhBGGDwr8QEk7HshyBwVXwLLBAltYKccOfuW4 QImq0dLaa7G5h5UZDtAQxRQu8ubbMlMEN9w01bRwHHIybUPNN+GMA5050lFnnY7yeLFdd9/t0w95 5Z2H3kEJLQSVnPBRhBqbSMVABgA0BNBlJQXGAGBKroZAg0pXpHAXH2bEEMMWEhgAWSYj/9yRhAUA hCCBBCH4kMQOUGjS7BNhkUriUk095ZCKVV3l4rY00lbjWZiphcy4nWw07rmdeIBMLMjQFAsGMSXn LqvJxZDuuhcVWO4r7Vljb034lrjam7DJ1mIFUdDggAl59hbEb30+Ew2gDxjHW3KGMpfoc+egow47 7mAX6aQ2eLcDeOJhah5B6XXK3kO+hCqftEjVQAcIT9wRbiUbvGrNBQHGMAcAEIDhxU8nOCRHJngo sMNmPgTwAh4AROEFGC9cgXMZG1yRhgY7EEZzUtSieK1UK2rL7dpsJ/HtjWPHjdSANV1Ed9x3yz2w awXLacwPUVwg+AVi7eYwxH5OXJygx/9hvByizpHT8ccgXyeydtyVXGl4l85QXgWatrzepxBJJKrc GdVwxxN6XDEqJT0H+B9KSVAAwAm+EEtBEgUAkNcGSZgAABnW/LR7TLa/4XZMQWiJ+lFlW+u3L3R0 4IAHbWe/7ds7P+/99+AftTecBms1QJ1LObBAi3o+bMIN8N/wCnGBDur4uOFEvqjHAghQOaSYo9TJ LDUez2XqPKLzVHtKF5/XeQ9CrHPdRWKXktldIAlRAEAJTBAQGIQBAGBIwtL84wHVhQAPLYjBT3YQ pRpMATJr2MEUdBU+jEQvRVIJQsIKp70eYoV7NQyiEMM3vr5pJQYEYMFS7DQD9h1uGc7/EA4RdBED ICzOftbYBi8+ADlFdawJX1CDGhZQnZDBY2SZMxnKOve50HFqdAuMmelmVkPVMYABl5mgzyyYhA4k pi0VECEACLCBnPzgCShUIQBYWBMksiUUENjBBlY1xBueTSrI8KEmpQLEIXryk9IqYpy0EqElLhF7 WmkfCyggAz7wAQQg0MMbOvCDAFyxcTJ5gEG+0RwvduwAUIDWFx51OUmlcXMpM+DKCvJGBcIsG3N0 oPc+oAUMNeYVN3GV7F7VRw3KwJQ0WEAAlkbInNBBAon8SRmi1MhSWAAx0BKbEC05vU3ak0YtKAu4 QMnPfiZFlOXDigISZkoHuMBwk2CB/xkyCIURjAAEmYCCDZIQKF9crAVAYIAErJi/ju7vAJVZwHSq oyMlmFQJ9TDZAPdRwIDI4KUyYFkzXwaqaA6xBRnUAAZUkpPGMGaP3CQAAJDwntl8YAPkLKTN0JlC YnlBJa3YgFSligQAbKGQnqTnPbfaok7686tgbRNr+DZKrCQAnEthgQywgRVVmgFoDtABEH7ghQtJ QAlJ0MEuljAuXug1CUwAQS94KQAUGFYchgUpFO7QhHes46QLcIE9TPqdHVABDP8Agwn+oYZ/EAR0 Bpkp6eTYwCHShAm3W4BDrlAGDRzBJNuk3Q+aRQMPBCAkUTDDOAep1HOisAVLUxYzhP8gg6IkgQYo wWolTyQ9rjp3KyTYZ1in20+A1rMXdEKrnfCUFbcCrQNAkJ8OBKkB3qgADzh7AghKgIEkLGENEnhC CUpggQUAIQsgOBYUuLAAIjQBpHoggAbiewIbLEAJZrBAfuP7BgIowWQpYMATWGeBCqRBATLwVQgY cAIabEo9zqxpaYcYAwqgFgAjOAFENYhBzlgjgw6wRgUyoYcTbAYADFtDgMxJtBTuIBMQ0EMBhKAJ OShAxwjQ2Se1+twmZyMBefiBELygvu5R98pEdBNZA2oMhGnXATBIpcMU+t3wyg8ZiDnoC0IABTzg ATJvWMISUmAsCNjZDD+QABROcIL/Zo3gC/5jgiGeoGIUu4MJEtBAkENRge1U8wQFsIAeZDWBVgIA Chrw80AuAGKaMvB0npySHEbwBAmAwAAy+MEHyhCGsK06DGVg0FyyAIX4amALdIgBGGBNmCusAS65 uAAf2FwRHzBhwgxIgWopOU/m4tAYAVjAC5zMSbL84A4vuI4JwDAeAqTvAl6IAtywTO4sj5V819VL 4LS7FB5Ce8xv5YyZKZGED8ogCWUBwhZPsEi3vTIqAQCCBxaAAvNSjQAqOABqkbCAH20GDi9Qgj4O 8IUD/KS+yIWAGeoBBh8QwAQdSUEFMFzNMBCA0y4bLTRH7EmdNM8ZDumETngy8wHp/yqKO+2EQ+YV hBTa/Ao/CFPPXw4lBoGSyX/bQgfURm1fKGAgNGCB1B3ggChY3eq3ocEXfiDdcnv9edbFShnQ9+X1 tRXeZYYfJQLwQQIkARtNEMICiKWAJAChMsjIn9uMZIafsAAIiv1CExoOIDd8QQkveMEOLKxjNywA aCNQAHfwgWEGIAAMChg50PAgA5TD8ZnvsSk/W0F6Zh+F9NLECOkrgXp/Ir0YaWs6MMzQARYMjt1S v0MLbGTlr/teYFpGNyZZ0AEcGH9wxsfBFgjA1mJ4V95qv0rbeSEDCIQGAHW/OxQ4qoIPVF8Cd/m7 YhcwzC+kAQB4GKYMtPCrTKTADP8mgKcGLNABMICBBsdCgB72rwcAvEENnFYBnydioPZ7BigtrwcM sSd7MZNE7JZWLDBt+jRuB1iBqRF2xhAD1tEOMoADFSB31pFuzwdeaqcTbwAAVJAELAAseBAFVJN9 lcFRs4NiWlAAVCN+IVV+53cCTSAD4IcA82crKZADNpAGWdB/mUAGJoB/egYFTuiEnBeAXhBiEIFR BWiBWIgUCfgLC8iA2EV22hUFduA2E9h7WXiGOZED52ZELaIAW8AwDZNQ8UaCuZAEQjUCyDFsO9AL fpR9egAC54IYagAOSQAHAICDUEB+C9AEQpUFApAFh/AOXyADAJACSmAC90AAPtD/LA4gA6uQeaAj U1sgA1PoaTGDUeGGhqpoQ852SbCXLV74CzKgRF8mBG83Ez/gADlghqtYgTXgBbWQAcLXhh0wAdvy fCyQV0BwB1uQCXv4AVAgWL3wE3X3AMeWALzwACDAAEBgSy3wQTgIAijgXwLgBpwhANUEBoP3An40 hGCwA16ADwvwE0hgAoJWjAV0coIziqWockU1C7SUer1YgQ5AANXybK/IIrHIC1PggGglbkWVAAnA AmEzkKtYAzDQAQMgjGxIGwpQjMcIbys4AimQAm8AfiFwbzrQAicYBhQABvwGADzAC7ZiAV7gAwtw KhZQhFRTNYDHBwDgBgRQAR3B/wQL8RNvYBBZAH6OhwNMsAWSpwaCdgE7oGMSkAU+4AMpwAdZ0Hlb UAT9GEfZ4BkRUAC7aJFoWANkwgNeoATNhTawGIt2kAZUR4umBJG8wBsSGVO8iJa+txQbOYweCZJx GAQskANM6BYIUF8U9QBJoATNQmMGEAIhlAQu0H5UcAArdmknEAJtkHAj0H73EQcHsHGI4RYnIAH8 1QbgxwDDJgFhgFkKUAKP5BYlcHJfSQVUeIqU0AYE0Jd+SW4fUAEdAANewAZv+Tdx2XQtsAAVoHzg ZgIEtRQ4YHZ5qR9eIAd2AJzBSV1qKQdpEJgdqRUfaYyFqQwRsCMLIARCIADWYP9F1KAXbdCJuiAA D6BFCxAFHSAiLXAAUSAHLHAAAmAGX2BY72ACcrAGHaAEh+caLlAAJbAGM6AECvCOOzADPmABXHCb E/APaXB/JcAFG1qQ6VEEummKY5kAQZCd0dKdBhgSclABxskGU4CQCqh0TPdczSkDHdABNEAFV1ED g3MBOEAMFuUwHkIA8uSiX4cBNAAHMLADrpEHZTWY5ulEvjEBV7ClV9BRKgCfFeN82/BXvAAEQQAE hkIO/ZMOhoUC/TN48EAB6nlgVOAFA2Ay9nBZLRUQ/JB5zDSKJ+qPtwhld1ABW7AgTPp1NZCLYAYD CvEDHrAE6dYCO9J8XPUBSkD/AD1KABTgbjvgABfgAEYKER+AASSQAXJgAkuaqFf2AQrgA2kAAwNw C1QKellRniG5J8AhMURAPxXDOBeVRY/TSxwTHZRDTGcUQJqzUsnURgh0EKS4mzEzCXawAA7QAS9Q qqxKXTfhIVvAAzDgqHgWBJK6kMfgBV2xn2EBDDq0oND2AQkQARHwqiYgDdvqnTXwqgQABjCgmy/Q U+n2C7h6nnySOL1KMRZDKMJ6KMQqOcY6UmVkOclqTAK0Rnu6TB8WrSiaDfAaAS+QATQgBxMgCdJQ siZ7siibsiq7sizbsi77sjAbs4u6AwXQATwArrawALWqGy8wIx8wARXAXc+V/wBlcBAdIAMLADzG YH9YEQMfcG0sESIu8QEyW7VWe7VYm7UqGwQiESL2twPCGAG5wBsuMrBY6j67KkUHe0vBqhwMuzEO yyjHakbZQbHLarEqE4qiqLGC+nYxUAMkEHGZWrMyYAIqdbiIm7iKu7iM27iO+7iQG7kqxaNy0AY3 ywNncAbrWatkiwE4gCcTEAUKUBHOFQQ7cAE9+oEBGwOW+gu6cgNT8A5g4AByQAMWKrm4m7u6u7u8 e7gKcAFyAAcjV6FgKwQk0H1kS4xXilBoGzFq66sJ6zhvqz+TM7cSW7cko0YElLdutAWNJq0xwyA/ cB1esAMyoJ8dUADqu77s2/++7vu+8Bu/8ju/9Fu/9ju/1kMAPGB/YHAGkvICTZAAutALB+B2ARBO SaAAQXFPVzABLLAFDpAGX9C6bGMNQZAHcicpPNAGPXq/HvzBIBzCIoy/HdAGThAHKHwGA+AaNXpU FCwVZsu8iMOr0AusCuu2GkO9D+sodGsGaFSx26tMevunAgi+Y4kBV5DBA5C5YHC5HvrEUBzFUjzF VFzFVnzFWJzFVny5KJzCZ8AGZhABqrYBbLUA95YADnADSUAFkqS0PUQCAwXBChAB94QcKnoHQpAB bLwDMBAHN6vFgBzIgjzIhEzFN9vFcSCrsyoEWiJVL2wMMSxmuuq8f8K2N5z/MV1UrHILsciKvcfE rGx0QKJYxBsbvosaAeR7p3wcrqzcyq78yrAcy7I8y7Rcy7Z8y7jsHU0hBF9ApZLKVoZ5BxQRFRc2 EO62NhEwAw6wBVEABnTgXAHgtDdAAu0gKSaDy9iczdq8zdycy1TABiJFAgJsq+RJmGc7w8+LsDYs vTnsS5vMw9frw8qqvZxzsUP8YaTct+/htM0jd0pgp6qcuQI90ARd0AZ90Aid0Aq90Azd0AptMgMw qyLVBLlgqzlAdbb4AzRAAVFwPWwTAOa3zBSpxk0mVUFwA8NkBhkQ0d7h0C790jAd0zKd0CpFBcJo vA0hlsobkmbKAiNLyYpT/z+4tLDtrMkew8k9/MN3G8TOKoopp9O/gBzwegMOkm3wwAZYndVavdVc 3dVe/dVgHdZiPdZkLdbqKa+UEC/FIJG8oKK5qJAusqPQaQM5Cs3R7Ag/YAfVKrFl3dd+/deAHdhh /Q7rSQKwkQDkbKW5WgMDkbaVLNRti8kNuz+N8j/FlL3IFMoY2wb6aTRhXNEiuAE4cQVTgMedDCSo ndqqvdqs3dqu/dqwDSTWIQR24AzjHLC90IVbYQaa6qNegI1emEKuQAd0wJ49HNvIndzKvdzLPdt2 EAFnJqm4XQyRnErSkJ0NF0WP/atYRNSZHLdHDc8AZLf03KyiTBC1B4+fDf/VwMAbumKvJx1F8j3f 9F3f9n3f+J3f+r3f/N3fP5AHQSDA7dF8l3CzMIB5/KBZbxUFdV0MMcDbm5oBNWCubydV8J0HUebf Gr7hHN7hHj7fGC6Rcpa8bFPd3QWvJLBd/dM/qqHO3Y3D303Z1jvemA3K9qwpUVAAPBCYU1DRj9wL ASBV46Ki9/pV+xEvlnoJTRwFMsC/3rbgDe4LH0ABvU0AuULhY6kr31DkXyXg16A9Jp4VyDC+W3AB KBAELJ4TLj7UMD7Z1YvU8azU5a3ZQ/yfBOAdrkEC5PrjUd04cvbngB7ogj7ohF7ohn7oiJ7oiq7o ycHnQUBIvTCcb3UBUV7/GxTRo0g73bI3KBuw6J7+6aAe6qKO6Mmh6bdqzi4iZ86QAcW3ABL56glg yewc428u3pf9yXgrxARBuwQgq0diB1RKxtzC5qVe7MZ+7Mie7Mq+7Mze7M5e6sehFaXwC2DgbXDt C6aLuh2guliuFc/+7eAe7uI+7sc+KJoU5lghVXkApxeAJapGtWse2cMKtzIO5zSO60z9OTSAIDIQ roEptq7Y7QI/8LRxAw7wzO8RU1GAA6jUC3ngwFuAA2kgBKZO8BZ/8ViO7tUmkXptBm7YATtABFM1 VetcKPOuw+9s2RNb4xb7xDGVvjQQB5kr0U9RA0vA5xif8+ZqAjiwAwuQ/wPeNgUBEQO5HccOAAb5 ofNKv/QCr/Hvhgx0cAfvMAAEULNIr1eDwuaSTe+1rvKeDMThUUAzoAZdwcxqYH++vgC1rQJqzfRu T+FmfAG9Dty9cAdpEAXMDAM/8PZ83/dO5vSctASUgMdTT5wFQANeIADNd8kn787h7fXyTN6bEx5p QAB4nyCx6u8KsQBPkQBt7/eg71w1kAZXERO/8AIVINImMCOh3/qu3zaAPxYzccrt0BQDsMEIQgMm IAQDfJ1bj/KPH7H3LkA7gFkEsMzMrL+svAMDMIVq/wM38eWvP/3aEwQdQAIQYcY9egF0Tf3e//2Q jOrDnkLS4Azs+Q4rHf8Hmlqzuq8EAoDYg0IN+WPUlR2x13tS/1y+YAA66FvCMpDIgLAjOJBhtiAU 8ROUENPSEpAUKTlJWWl5iZmpucnZ6fkJSgnmIrmxQNDRQeOVEOr6ChsrO0tb66rQMRHrGPPh4XF3 t2CWkUFFtQNT0daxtaVaAWZ2cCCgco1NpE0kIND0HXx3sDBs5rIzoSBDE5Xa4cBCkAYGUw8jKFJ4 GHETVPOx4ZGtgQQLGuS0BMyFHDm8oOpQYcGHgxQrWryIcRMuXbICBFiyJEGQGzfs2CHHhk0xZDDS ELjgwNmzKFFoEJABBsyEnTl7Kkjj8mUUB+5SsWgjgwc9QYKOKVFiSIj/EBKKEnxY4iij1q1cJcWA QQAHjlQEvEww0zWt2rVsN9IK4OjDhyBBSJB48cKM3mIZBvgdIAgGjwoECl+g6SAxUXdixUa5cKFw kSJK6d1jii9foah3SOTJ829DQLakS8NK4JCmjAUtPKQKYjq27Nmg3NryCFLurx8/gkktt7eYl+Fe /hrHjNm4cr/E9eo9JKSz5zwJGDVyBIm2dtpBdlzAwULBlOw/4MHejj59bNu3ecWoTpd3hAi/gQcn Tny5chH88Q9/+hx0Jtn1WXVyOYKdegqm9QMYLGwRRWFglJGTCWYcdt6CGm5YEXsDeQRXCzGM+AF8 dJFER4rhSCUEOS6+/wijiyxKFQ5vvP3igVUfjIgghz5iRIICUWzhwAR2yCCDhATQsACGPz4JJSwe FhSieyWa+FkeNk7BpUkmzQiml15yySVvedC1iI48PuJRlG7ScscMMUUBxg9J/EBDCztQkEQMaZjB AgsZvklooZJMeVGVIo7Yywc1PFqdSGhOSimakcq145rYgWhop6G8UAEOW1ywQx6SmCFDElSAEQkY SwrqaaxRImoRiAgiuASjmGL6aK++7rorSFjdCmJ2sh5rSQsLyBATDWUMmsQLBCRxR55JEEYDrMi6 QgcV/n0LbrjijktuucPVQBqtaxXL7q3EslvstvJqEoMZD63SSiUJEP8QRAuFydBGDoFCO+8mw0UQ TsIKL8xwww4/DLHCMESQbi7bwYsxu9tFYMOSNHwMcsgij0xyySafjHLKKq+MMgE2UEAAHB0QkMNE mDSSRA0mxEHXO/kW3IkXd7hJwR0ac6Uu0BW9QIMcNKSxp7lST0111VZfPVwZadBglBkbvEKHnUpz 0oLQRAshWkAtdJX02AWBsUYad/hKd91234133nrvzXffftt9BwxbKLB2m5NsgM4EA5hgjyAEuy1J DZPeYMMCCWCAeeaab855555/DnrnNktCgUQHro20xZBblIYPEmFQaeyyz0577bbfjnvuumPwwQtb EPDBpl7NUEEFEQL/5RIcHqxeyQf1ILeDCdJPT3311l+PffbaZ496JAx9VsN1xmLUNvOy7ODDC3Pp zn777r8P/+0f/CAHDy0MW4kHBMQgyb4/m5+EBMAAIGlLm7AOiMAEKnCBDGwgA4MwgSVMgiG8ScCw xncRMHTABAAsSB58ULP4iXCEJCxh7D6wANfJZQOGi8QpKJEGKnQwEkEwAQY5FAMT8E8SDbkDHYJw FYG8QkfAKiKw0jA4IypxiUxsIhOhVAEaSM6EVKyiFXH3gcL4I3jdu1MUbjAJAgyALh2s4Q039AEd TpAKdpgCaJbQwk+0IAxQqKMd74jHOzJgj3nsox//CMhA2pEJaPHR/we2kIMpXnGRjLxiDRZQADPQ BSuicIAXvrAsJtEEXUr7gHP04gUw5OCTpCylKU+JylSq0jmDSuMOvVeG6NzAgnH0RB5CcIItFGCX vOylL3cpk18Kc5jELKYxefkEHCQhQQuywxboALtGSnOaJHSACT4DkPEFQAkEqIkCMHAFHEThcch6 wQRiZJ9VqnOd7HTOAkyQg0m4coKx5IcFsxKKPEhgWp3SQAeScMEFmWGc1CyoQdtHAxnMJ3xnFOIP wEPOWEEiL256QTwlMU8e1nOW+MvnE6LgKQ0UIAlA4JF6PJKDC0TzoCxtaew+JgQ7BAEI+FymEEi5 gIEB7RELuCiUev8qTzVqFBEcreknbvDRkPpgCUBsxBlj44iUrtSgj6pUVf2RN6zGrle/wJxLX8qk BZwJny2ogCpCRgF2RNRTjgBqlNwaiYzCUpb37CLZktCEpPYzDHmIABBHgx5HUEClLeWSByhlWGAo jEx3+IFip0qXYFwhPneY7Fcn9TFD9IOS0XLAD9zVBPMATTRwfVJp5ZqEHMTyDkW16yYeMQW9GkoD YSCBEKjD2e3czws0gOw0MaABENhhihjwwAhAcAUvACAEzN0jc0MAACRMAQpP8EFrftGCDjzhCTIQ DRKeAIYYXBZNmTWDIjj7Qko8VFvzAklpf3Raoc6VtXUFhSPuIAH/kPazBC36YfCeShq4fIC3vpVm DZgggeHSpbh6kAAdFkCGLEiYAQAwgBuygAcCvAC6T1CfB2pwBRAAAAAECEgJAMAD8Y43CB97imeC F4kNyEBskriBaAvm3kL+1KdJQK1q6dpRT9w3v7BY3+gkAbtJqPjIcfXA12ahAf6aIQIe+K9uWzDg 3rK0BiNggIKDUFwmdPg6jtBACGCDIDOEQAMAWENrWkADAIyAxCYGgAJUPN6PpcSNME7CBgjQhmMc wwtmeA3Qcuym+L4ytattrX1b8ALZgoICfMADHpiQhaElQQkj0IAWNLCAJARhBBAwABNKkJ0EcGEE eOBDAQDcCQ1Y/6Cnd8iDlbUTFwJvuct02MCjYnDgDtcAR8YNwdx+4UkAyOEET7hDDDCAAC34gM4t OPGdV8xiGhQjArZGXQ1ygjygTMEGO3DtsUCil0Tz2MeNrq8cWyAESX8CBlCoshkMIAGKKWALP8AA BEaQhDw8QQQbKAMARtqCEYxAIgoIQRhkIWtadxvWa3EEEKig5YNy+QnmDQYd7sAHBrxAkaM29hST 3YEdAMAHSSAAAEzQAWpbG8+X/di2uz3DSaBbx6Zdt3wZDWSjciIg8dZvKEygh+5pwACUaHiJoBDq JEAAAkmQAQBobHU7xOINFtBLrWvAQt0u4eIZpyqbn/tcAIBg5P+TGoHJ6ZJsljMBCnkYAROSsAaZ 25nmX7V5Brjd55wDdAnpfqvPF/1j+ga5E0SXtyeQ/koCSGBQWUBAEjwABU1D4eEl0MAkgvCEGWy9 62b4ethxPXaMF7iRXA4BGVIAe9g/AQpsR5Pb5wZ3M7S55QA4AYmTgAS9X3vFfgd894LQEx4o31Rj 27m6g4r4di9+6PB2fCcgL4k0AEDrrbJzwKGAhDac4AQYSEIJUkAJPlRg9F4Hzelpcz+yr56RB2bA 8m4l5trT5fYn1/0aRM0EAMAEQRAAwVdi1bZ32FZ8OOdnhVEYYDFObuN8hgd99BR05pYJjWd0oIB9 kdAGT8BJBsf/ct9XAsHHKuYHcJKgTwrAfqXnfhSnFvGnersmcsPmAWEmbG33dkDkf45wAQAAB45g gHU2fHmmbX/HgNUSADuQAQBFAMvzJniBgZQwgTtWgUOleEK3CRr4CkiXHQHABBYQCQPwBCMVCTcA BRQTfEqQBEYAAEIgCSwQAnTQgqYHg2khg2VXUFzmZcTlAflHcvyXe23WAnSRA2M1hAgIBoVIfEdo fJGAKqpygjNQBiYwA0/2JDBHAFTwA7BWhT13hfPlaJ/Aha4wAU8gBHRQASOAALABA20WBD8wBS1w AxJQSFkAAKGGBwwwAz9AACEAB7LAde0HdnfYFXk4f4vEh1+G/4P6V3K4x4OEiGzF1QKJeGI70CeM MmwttYB9Ji3U0gZrQxgsgANQ+CQ2AA8OEAUyoATk9InwdXgWmIVTeAmlGApm4GmfFgbncQEjkAXj 9wYvEAN48AKSgAeotgRyoAFzxk91+IJiJ39bxgchUHvFBQIUuT50EYDQmGxI0BqTMkck5ggnxgcL qXAjIAd8R03diDr70i//0gaAwl4/go4gMxQs8Cf/M3iFZ4UY9XOJN4qeYI9rcQMhcAFA5JDFCJEz eFAYgAcjAI10oQVQSXKmNgUntwB60AEbcFhosgEdAAJpMCJyoAd6gEdhoJLTxJKSkBUfsANgIDkQ FSVU4AAjM/8UNKAAQmAz98OTl0ACIgAElPCXcuEFfGGYGSACprIAIqBpbGkGIkACkVADIkBjnaBo 8hiUjFd9G7gWMsAEI8CZoDCMLqiUqBeR2GZCZ4KalLKWy8R8/bMANFF+PgJsH1AGNVEyNEEAMHAH wTMMmjAAVhCZk7ADVnADEcABVaCcy6mcVoAWBMABPXBkC8ABHHAGkTAFDSACoHCZWJiZ1Fd0soEz sDCadriUeriaJtQ5fUcDevEDCdA9CRCOk2ACr5IHtuIuLVBAovEDJOGf8wGgEYAXA4oXMKIE0NMT PTEDC4o8xeOghNEGbbAyRNEGhMZzluAFK1CZSSACK0ACAUD/FyLxB38QKQnwNUXQA1jQhJJAACm6 nUlAAivABtwZj97pbkK5mZ5Sng9pmkyZnj9qQt0EFPdQBkVaBhNAAzugAEuqAIAWoUiCJA4opXZJ E1XaGGNRFM2gS74kE12apVl6pVdapReQMokhAwNAAn2JoRpKCR06nCzakCzqBGDQAxJELVjgBVgw AJEQozP6Cd0pijeqmeGpCS1gBgUZCS2QA43pCgPGSbawo6UJf6mHnkBqqe+TBlXqDr10AV26BeDx MYohqrgZMlL6L1CKJOEGFBNgpEb6LaUUI46VJao5KbeZmw5wARNwB2l2oZWQoa8ZCRngoZPQAn8Q p5FAADxw/wMrsKIE4AR5UAV7CqMySqOhCHTzCApDeQkCFwIUkwTalwWxoARQwGO0EKnvNxvIeKnr Cj/dVDw7YKHk4AUsYAgucgcuoI5mQBU2oggbwCgjsp9q4y5dkQN1KTJmagazuZO9SgkZUAUwoBLF wAZFUAVvukzGWgkEUATf2gMBsKzvuQLS2qfV6pPRd4HZmqOakAd6AAAPlwR4IAHhGgB3oBezORIx kAPe2gJ0oCwLAAkbYAYTEQEtEAFmsGjkwBuecK7GyBXqyq5PqzstpgTv2UUbmjM1gYk/kgEGyw51 OTEY9I6V4LDMqZxYgAUWW6zH2nIbG6NmYATTkgchy6fU+v+nNRqo07eFKZsJN4AAFgACNUABI1AC eJAEWekGeAAC2AgHDIAHZAAFwUgHIKABrYYHWMYErKEHGuAGU2kqH3BpBsAAWqC0pGeePVqpUIu6 YHVzXDQFO2SoYBB1cpFo6egAFWAGj0qFhMewk5ChQlADJXoGFUusGEsJGhsJRWC2WresIku3ngCo 1/qdeUuoe8sAMKAFBeAGF9ABorsB5zEHANcBIRBqVqcIEsACSRABISADLQAFZtACT1ACjsAAcoB3 egAbcpCCnLC055mMu1NEG1BcqStN3Vi4cJAvOzAzcICNhHIHBZCkH5oJYUsJvzrBw8qWxBtGG5sE dmAFfwD/Ccs7t37qvHYLvYIKntZHCUhVBsoFAjHgA6K7aSVQAm/wBknQAZbnZwxQBhgABWKjASmw ASDgvgyQBpEga0kAAv/Ucvm7Cftruv2LOzGAvyc5AidwlFAswPFDwDkRVw5ACuVBh28iAErAZJcg wbzLppPgpsOrtsYbCYx5hnI7rSJsmSQMlCYsvSg8CTfAACw4AkgAfKJLAyGQAgQQBjXcAUmXwzbA w4j6BlkQxEPMT1GWBFDQBsjKxJrgxJN6miLUAm4AAFBQllAwYmj5W161rgs4IgRQSC9gwJFQAWUg gbqrCRm6oWt8wW2swSksx21LsnH1k9KnhZqgrZbAx0X8/wGQEAYnkAQjIIZJEAXgqweRQAEAcAeY JzZQEAUtIMQtwAD8JLhJcGqREM2jS4zoKhtO68lcAABlAGw1MMgMgHuiAUSOMGy9QBfhgyaNUFzY FQM4ws8fBsBw1710gc/+gGf8jAFx4QEHHQS90JUkpMoxQABRdyFPBjWzrKa+msaSgMuJisEsust7 3MsrcAZ2gdJglAnPe8d4S8x6iwk/AACpIgklAHByAAU04AMSAHBREAIFQABQIIY/8ASF/AZMsAEf IAE50AIAcMlJwAduUHU/XQBQQHWdsMnpSqlYbDstwM5U0AILzb4MQAeSwzU14AVbIAde0AIiYAAg AAVawP8D3YsBMiAHd4A5V7AFFSA53+YDXpMHa4AAUAACJyADBm0CeFBHJ6BDYFYBcnAFC9ABckA4 XqDYUNC3FEByIkTASwrL64esGTAFL8C0bnLGkhCcFpsExemtiYoGaFAJIS0JP2AF15kEU7ACK1Cd 1WkFaECPLC3M9GgJxdw8WxB1kVCfkUADc9ABLpEEcAAFPmABFwAJJAAFMuwDsBEDHXADAWDcys2C SQAGFrAFPuB5WE26PMrJPho/Xg0AXhAAH4ABPr0FzxYELIuLI3YBCyABAIAAAQgANBAQYQAAFyAi YBDKAv0GAKA+WgAAWdAGFvAEDhYAPyhnARgCZZDUDp7/AtAFACXA3xLgA1Hg4HPAiBLtiLaWBHSA AzmxBXAYcFFgBlyzVp1y2jS0AHYqCR4gEZRgEpUQDJYQA2IVV2AiFREAa8B9sqQI07QgByBACRHA ACrNCR8wBZGgBc+sv+ktqVrdye09BwDABwonYiPwA/bNZhKABCZQBnfAZg6wI2kgARIgBHWgchYg GicGAGBQB7EFcAoAAGLoCFMQBVcgBCEABTsgGlZ3AnIByoE+IVOAi9joCCYgA5utxSkOY3dQGDq2 A2nwAjRR44Zy4woSX1nb0sOcgU0+Cx3ABF00BXyAqJyQlRDABI1uzqSJzlC11STUAmEOAmXJB08g gF5T/3Je4GdJYHBaEN/ll3c0cNtPwATyjQAaAL9JUM3/53IpQGaOMG2iNxpZYGwtgIupIhoB4Htp EABp4wsm1JpJMD4xEADrNeqFUurqEV81YCxmENwoO7214GuVINyVEAQ+JJpcvuumoc7t/dW+VgMv EHwn0L0j8AQ/MGwy1rKMmEOBLhonEAJToFwTYABQsAFRAABpAGkiFoas3AjsrAEnoAVagLgM3gIG AABG+wsbEGcAoAVroAB08M/urun0SO+HRssU6BX1UAaGAPJesOQ4+u+zgCAjIgkBQAFUThFZnc69 PkLureGY0xpQIAFzQ/G41wJWZ10GrXJu0Agmjz4S8P8BcZYDJSABVzlguzhiIQDtKQAA2+X3UMAE L1Dz741nNRAFAC6AEiH0q0v0coljR9+TkRADE6B8CZoBTz+oehwKBcBqeHACFjAAesAaIXC+FqH1 vP7l8OPeO+ALDe0BF6mXZS85G1ABH86ILcADGR8DyrUGI8B0G2bTWrA+I/IDJiAHzEUHJ2YCH3AF zd/8QGTzXoBnGOBrC5AGNo8Hafk+724JRf/4G80hpTX5O+EXT7EAL+AZNYAVpe1nrA4LGEYX1BEE aRA+DPAHF3H6Cs/163zzy4RlMQcIIx8YI093NUEfZiF6HgEbG3gAMy0YHnwSIRUtMScMIT4tQYkb Hxv/SSUAZQQAJUlJGy0tiB8GAF4xo6OQH0kfDAgeGLrExcbHQTQ0GRkReR8tr9LTST84LEHU2tvc 3d7f4OHSS0tmZuLo6erbC+fSMRMTZwMDSmYLL3QeQEstAeqxhDyJsq5bClfvStxpAYXAqw4aNFjo VbDbGwvm7uSpseFfxY/hWiwBQoXGMGQoj7XgAsBNmDAlmAAAoEAUEwmHdlkAoKWMGZZMggyLkQUA lB81WlyYaSJGDAJZctQIMIVJiCkYEADIAkYImBIaFtrCNaoGlwJ3YqVpuSGlW2PKmDmDRo1TtGrX soHcy1ccOXN9A687UOZHghicYOygwmzBgjskbpAK/+ARXcCBgkvoKVHCgpAYTzIEaJikAxMhJEYg FHwx48aOgmOLJGnyre0Wc2bqBqABRoxhhV4gClKDDoTdfBbkCtKCBgALGzx8WCAByqEWMmYygRAi BI0PMbzI3M3kyoaiZIPEkBRCwwgAIxYMt/02brNnd5MkgNGm/44WeRTQgV6xFdjXX+4YqKA2L/Dg 4AQ7UADDABnYI4QQEfyQRwLQ+ANQCwIRFJgFGihQQQXSgWAGQwS0wEAJMMCQwhMUBdaaGRpxVNmC Fc1W0kn0pfSCOUQugMFyQTjmATEfBEEAEkg48EMMS47yQw5YeaClYyflQYEcnPlgxnJUPonEGjLQ Mf/MkFcQ80MaMJVwwQ8fVBlkSvbNdddTBNxjBg0yKGLGjjwWGg6Chhb6wgxggLHDo2XYswBqP4zy QYcepnOZiH2lYME0CajIkBo1POFSCWE4sERsN+YIW6Lr+FjbnSjVcOmtg9h5qTEYxCJLDXaO8puu TeqCaQvFjtKrLL+WlayyiDFrCa1u5YnfKwuwUOMSF+QA67fgIApugS8ocMYZXnihhBKO3aHRhgmQ wyyh4GwqGBdcgCoqFDJsEAIPPLb6Gr3jdiMrkNQmfIyWWirMcLCjPAzxwgwrjOcy99GVxAsOTZOG CQWHPI24IqdDGWXTvAAGFVSY0+4dGiZwWLSyFGT/b2BZZAEqA0q0IEEbSYTxhAlXtFFAgQLrWPI3 B1vs9NNQR02rtRonIUME08ggxNIhk8z1NJx4EEEEC+SQ7tk5PJbHAjCse+HYN0iWSIcnV3RzX2us Mc0HWiwQgAZpvLLGCCcw0TFrGOE48NfcyEISCwhLLfnklFNLAMbOLFGDAmko0EYUM4ReQQc/MA6u 1yUHUMMPZe8AAxgKxA5GjLTXPuE97uYB76U183X3uKcYmPSrpoM9ixIdtFn58sw3XwwLBMiVxxIf eGGDDRRQwDLLXiSVX/ELog5uCwlMYYYNsMvu6KOLsVzhuvBbKETcl/Yzb1+/g7/NB4jkEXfcQUhA //C0kDhXEYxxv3pBAYQwH+c58IEWw8AUtpAG6VVtGy0gAAFqpL8Cic9QH/jB+dKnANo9ih5nWxeR VniPBdjBDnmYmyxOdsAPhaiD0khSGpBggTeAAARQCKIQg4iALPgABBYomwFxmARZJCAPUVDAsyBI xSq65QMm2AIMvMCGKVxLGjUQQukScAM64AAHHmCiB8uRoEK1wAML8MIEYlfCGO2AHswokmMmdSF3 +dGPP/gBEExBPMHkj2sgqkAYNAAFCQDjDQYogRzgAIcLWDIKcJADF7TAhyeISXFKw6EshgEDOdCh gVZMpSpX1wECoMsMJPhiEhYQBRxUIAl5aEMOLv8QBQKp8UBsLFQNIpCDHdDRhHccQLok5ZgLCeGP JIimNKVJP/sp6JAFa8Ed2sAFBDzhCUwwQBja4AQwDIB96EQnPWDAgzOwwQx6qiHXAkC+PAghCjQQ ysRUyU/nfUAGBYhRBsygoX68IgFRwEfgkhAHGdAAG7805AbM4AUDhXABZUjf7BRzx2WyyzEveMHY AhksmZn0pBwiZO8KhE1Y3SANFrgJA0ZggQ5UYH0xMoJOjWC7nsKAZe8kQSIyJUpERMAMciBAIvrJ VOfVoAZpkEMFYvTOSnXkHwtwyA0q8A8K9AeiEcXfBiIAgzLcIQZ7uagc4xEP9olABMwY6D36CLP/ QGoogAl4qq1wxVd5MeuaIMIMuDaQgwJogAESYEIKOpAG9jXqseeaBz2UGdfKVnZSNzjM9zqILBWM LYsXYOBTMUDa0pr2tKhNrWpXy9rWuva1sH3tpe5AADmoYXY7uMcNVNA7jiVhq68w0UN9GdaPQCII JFBCjHJwhwRslhsx+IAAhlQGGMjuXJNVlwrn6q5A6s6kt/Irs8ZL3vHy6DIXgBVtU6AHCYDgCD4o gqNiFIf6IhOFHmWhfs3wzMWp8RFA+MEXzEAFByTVCwuwq4IXzOAGO/jBEI6whCdM4QofgAIAtWmj 7jipIADBH//YAAEoEIE0EJYGC+AlcYtrs7bc/yACQjCD6xRDgXvQgQ4KjjFFZ0y7yVI2ri3k40g1 FEOZXcopNAMxDZe85PO2YAEh4JSBgqCAMIxAAk+g6QVwWju35jHIdL3DjRU8hTKXWXfgISoTS5EH ErSDCjyIwha24IA62/nOeM6znvfM5z77+c+ADvSf5+wAAtQ3DjCAK4Y4hLJX/KANLIg0C16QBweA lcUfcWKbYSwEx2TgnDuYwGNHbQIToNCyehRyhn6gpZSKd4Z1A59I8jACKJBOMB7wghy08AkEGKAA U3XdqO24gxS6DB8vcFc0vau7Zju7yKZQsyjraYc4esF1FSiCtjXI7W57+9vgDre4x03ucpv73P/j VkMadmqEc70zAjcwBWU4JI07pK0GSaBDB9CIaZA4MQiBDOke20Gk+G1XvwOn67IrhddL+Wpejebs EhIghBIw4Al4qEAebGaGGZTgDYgFgRbWQACOjvpc12PGO0H6gjIDsOFHdgokZo5kJK80oshKAAnu 8GYqPMqnQA+60IdO9KIb/ehI72mx2fUCyfTjHzCAQxrMcAVq/FMGaO13RehJjgQA/AdjC6nAB072 ZjrTXS6Xm5GjDWt5cvaNYtN1IWa6Bhp4ocjk6PoTzUCAKJRgBAhwZDhJbk4eI9PYzVR2LGNInL3m 3X7lLa/bi/eI6Pyg2mzwAj12ENmke/7zoA///ecfxTLcGQYaKAuCF9LwuTYoYAHM0XpfmAUEIBCB CIEcW9hf4MzeO1P3q74rzF8daxbLAuCOWZca5GAAJjSSAVAAAR+mzwcgQuGbeghnGKQ+IcMT26Nm H5vuRlH7mrdd9uj41epgTHAzMONs8I+//OdP//rb//74z7/+869CFzpjMtrQFguwAwRwAQSQRugH EpQhC5ciM6PgbAzmbKNwUuZHXpP3S/QELC9gbcVGDzzQdx0QBhYwghawBh0AB22gBhz1c7ZDeowh V47xQtH0XUZGfMWXgODwCMUCdnbQae23X0AYhEI4hERYhEZ4hEQ4cC8UNzUQLd3wAUKgALVU/zo4 +BH0JBLU8wEn9YDNRgwnhSuQMF40VIWvkHNNcAfmsHnptIbopHSP8lZ5xEfdxXDl5xR/RYb+xgla GAS6E0hTAHyAGIiCOIiEWIiGeIiImIiKuGq681TkEHFJEABBIAQTcDkyYAOHgIdWeDLlRQ4193iR d4OaKA0BEF158AMhZQ7MoIZsyD4+pkza5TJ9NIPQ9gE2eIGjuA1X6BRP1VS+KDVGZofPVQZbwAIw 8AJZl4ubeIWR14yRp4wYlHNx04OOwQbWiH/2UCRvs2qtllJhCGLQGBjMiIXkwFfmeI7omI7quI7s 2I7u+I71k3fnpw0LIAMEkAZUkInSkC7PFf+O6ACJTOaP3kAZTiEzcUMCESB2ZVd2ZzeHjLd2kKdk AimOS+aMFnmRGJmRGrmRHMmRuBhGO2CP+BhIODAgE3mS4yML0VUsffgD0fRH7nJjdPA/urB2M3dV KLkgTLaTPNmTPvmTQBmUQjmUQlkRN2ACDrAFZUADvZSTTskjNDRzl6JXyIBSuCJeoviUWqmMMfAD FDADyiADCBZpK7aVZjl7zLIENbeS4CGMkneWcAmNLyADFwAHNAAGC+BceHFpcdmXW8eJFsmTfjmY ZBiSOXADm/UDHdABCEiYjvmYkAmZ/ViGYDADyRiZmJmZmrmZnNmZnvmZoBmaojmapFmapnkKmqiZ mqq5mlwTCAA7 ------=_NextPart_000_0013_01CB647F.7270F260 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/Architecture.gif R0lGODlhjAKrAMQAAAAAAP///5mZmVFRUSgoKMzMzIWFhRgYGNfX17e3t3R0dObm5lhYWPf390BA QKOjozo6Or+/vwgICN/f33h4eK+vr2ZmZkhISI+PjyAgIO/v7zMzMxAQEAAAAAAAAAAAACH5BAQU AP8ALAAAAACMAqsAAAX/YCCOZGmeaKqubOu+cCzPdG3feK7vfO//wKBwSCwaj8ikcslsOp/QqHRK rVqv2Kx2y+16v+CweEwum8/otHrNbrvf8Lh8bswA7vi8fs/v+/+AgYKDhIV4HHSJiouMcQCNUo+Q k5SVlpGXTJKZnJ2enzOboEOio6anqJWlqTyrrK+wsWeusjW0tbi5ulG3uy69vsHCwzvAxCfGx8rL zCXJzc/N0tO70cvW1NnaqNjH3dvg4Zbfw+Ti5+hz5pUKgQMr6+ny82jxkxYPKhEO8KAbhgADChxI kOAGetPsLdIQIcIFCg1R7Ov3SWEuiwhBYaRjgYCDDRAcHMhnYqKKjWlQ/8ZSmTETSzj4SMQsye+k RnkvW6qSNVNETxImU+QkM5Sbzms8SfpUCrSm0Jvpih5lJHVNOz0VTgRFURVMV6hTy1lCYEDGT5oU PX29QnYJMA12CsqdS7fuoQnM1o4oUIAE3xENFvQNUACBCASCF/gdHCBwAcWHHx8mPPiBggYuBDhw kGHDZsZN0xIha8ABgxUVSm/eTOGBBiJ6Rfzdy9ixbMMBEEumDTjxCAS7Dc+2jDkJsAkZqDmIkJdI AwUBoAeAoEABhNwQDFh4VwCCBesWDBBgTmCAAQhZEWTfTti7AgKKLYSH0BeCeerRB0RoYCFA/xQW QNSQQ0yNsBUyRCxAAf8BBFAAEW4mIMCABOYN2JABDHCgnxBSPRedCNRZh5123LnnnXjk3ZfeeiV+ B59/89V3H3QK6Meff0Ycl9w0yzU3hH4WZCXAfwI0MEBWAejXnQgEGGZAWQRgFsF1R4qg5HVJFkaA CBVchx52hJUVgAECCCDdCT+dJcKBJgylgQEZGAAhCgt09EBxKFTgwAB4/SAVkEISaSSSVzLpJJRS UkloBEtmicCWAXQ53YphikCmmUXoqBxzSAnxgH5YPkkCpGMa0CikomIZwJakPtmoqQUAwCCD0w3G nZirNtAkCmkWuKZTXAVRwAYG4JnCsAK8UMEGSPZQ1KdTWorrqiO4iiX/qmWpymq1pobKl6yz1mpl pUzqOicQmvLIqTJSQbCAu6Vyqd5g+JwqLbVg0rfUq3ypWp+t5FZgQQTv8GrekwZs4GsAbDoDhJ59 rqAZZC9oYJ4P7b6rmKiRzrvvtfdCqp64/j3Ab6OEkXwrlwMXTMoKyG3qoxARWIDAO+9WUAF8AtD3 wJb2xkuAAgUMkGzPBfzcnqX1CVDAdyq3ZxgERlJsQgFPbnDwa2jZ5EMFF3AtsQXGwuCgs0TUfHMA Oe+8ANJKBy3q0EUf7TPQ3k7nNNT6Jin1dFVnCvOO0vTYKRKk4ZaaAYo1kOyYa5L3gAFKLd744/tZ qgBJRYrA+eMvqBma/9c8dFe2RBecDgMDC9uiROJcPnm5pZGvOnnlsjeGeXEGbC5C5wF8rkS6ha/r zRekPmFAIP89xcO7EauwwAZWz9DABufaEFsNyc8yuMyHc+FyPT0ogIELrOeAMg7b0zC+9yrErO7M 52yEwAaqX32QDlXm0P4lxGuG4diFEx6I7gQXSMAOhqWD/43je/MLnzgw0oADiE0FGjhA/miwK/YV MH6EE6DxiOHAneigYSd4QPN0QIFpuS4qECwe/Sa4A/O5wAKg00ECLuC/D6ZAfjKUoA8E8KQIZC8F wCsBmUgggBFKxIlOwEj/WDBAHQBRez5EwRVzgDCTjYCIBmDUFxG2xP8xUm43YqgiCYdAnSdlxwV9 KwGtRLAAArgQBRzDhA42ABoVdHAHDZBAD6XQREUEMAcEABeDFAMBcAEAS42c1fgiOavqeUGNYhFC 31A2m8hARl8LmFN5ONUzMQmGMYLBzZOA85vJ5MY3sLGLJVFwgFneoC5TKI8hY6gDAmCpAgDIFqQe EMzpdG8EEIBUHcvSgMcMJpWywUwzo5mbTlJmL83cIA0wKYyi9G1IIKoO1WCEolp1BzQEUGE4y9Il 7VxnStqBjngUYIHrNEpf5TlPs4KAkT+uIAPRa+AgoWAmeDWmmmxDI19wwxe+FKeTwuljFHmJSCwJ AAD5SCYyvUSAhpb/IJl8uShzlkernzGoPwN4hwUAgJjxLC+ZkGTQtRiUwxxwMxjetE8y84GpMSlg ZAzzkgDel6stLeBgHWPSmP7jJOnYE5J9iVJQYbODBLrgpjXYIg1KiMy3Sec89ByAi9ZJgKwgjADJ CtE47QNWPf4whIhU5H80CqItNRIPoKHkIzcGgP3UEToRwKjSElkmu3b0LwKIkq6SpUsfYLUabHwm fPrXnZ5SCwKYNcGW9NNEUdVpAHQdgC/NKib63LM+IzgmxnaAQ/S1rgbre+ETRlZHzREGUvRx3L0s 1Z+e9m5SYOIFRXHgy+50kK7T4ahHSUDXR71DPLIBwGDsWMefbSel/8FLJAFQCoCU6tKOP4iLXeAK CW8ypqMcU2Gj3lWr346KYfWMl9GUqrgtccy0UMUXUDm0gwecpgXg5IEBKDBQJ3TEu/kQ1WmDB1rw Bg9LlPUSwIQLwh74km0XNqZstqvhEyBXo9DNDUYxnNbiJjIfzmxHAd5DTQf34LGhACAbFfCk+D6q AhEYj96Klq36GA9SHBaV0VYMn08VQFL3fUxZfxZVos33ZTrIoDZHsIAD9CCOWISCVB8cr9M+amNl QVl6+9M3ompiuDfI8EWz9UiYYga5H21zIssS4iQNja4Xhc4cRasd+DxKPgDIiot5AGMZcPUJRQEj 5X5TRBE04Emcw/8MApgiJgEYJiILKGLnJsc4hpESM6lpImbSuWiqVlWBLcDyDaos0Cd8alSkWVqt HlWAKVmgjk4rzI1zzJwyu1WL5L1BGQNARGJ3cYwoUHQY1zQtMBbn0YYpkxlxE4FGjwmKOCh0DA49 UU6olp+lUxVqzEwDGxaYCThm4oB09zvMTM7SRSJjskjzac/9+gRaVYa2YcDtJvT7CeRGVw+muAI+ 5mACW/YgDCscwWLIeOE7uN+UZTPOG1i11eg45DL2/YJ/uyWLOqhAwEuAgTPRoOStALkJ8n0Mjv/i 4Rn/wYBvWFMY7BBtEAc2+Bz+wJzzQAEMmHgDGGDyF2AgdTiPOcP/g8hzEyr9Bw+AALZJ7oAj0mkA Rcd4/dDc8qlvFeZbF9aerA6U7dpyBG/KwD5T7vOVB7vrSaeEx3c5hJ01KAJnJ/YBIICBERZgqBwo FrjbXgKWE8PlLZi7cVQOBLKIBADAupoCHKAH76zdT4wngeGHgXgWKB4Jn1cHWML+1p1rfRKhl0Pq P054zb/98F6Pcc+f3onVw0Hj+o69ocFOw4pkfgSbF0bnRYP638vd+AEIfjCGT7rjt34G2llCa3+H 2fAgyWYvf74IlO8L5jvP6aTHQTLz/oM6quo8fPlZVlT9/fCfYAESsIv850//QEj0lrwPh0UIlscH VJu0ZvQ7CPM4/++2JghARNmjAEPFKefBLSTjecgXFtkHfr2HA/rBXkxiAQVQHk+DUk5TI9XUHTSi gfIxJuiRWJoVPP/RgD6RVveHINongRPofLRnA7jFKbiFYvbkOaoSYKTiLvdVAgTTGKiiSAXDfsES gzIIgbPnfjSQWCllH0olLktyHmKFJVF3GKpCHxzzPqDlXXQmbiDygm0SgUvYfMWnhKkGIS+CW32x JFIVLaaTWsVhX2IyPrW1JvYlhg9IfPp3hrLVA29zAZS3P1fAAfWXiIq4iHogSDfwKDKhZ2O4NG0k WqsSHqJyHgaAdfHiN1+0Qi7Fh0gIgzUIiB3nAwkAAQdgAQmge/+Rohqr0RoXJHBquAINMCe3mDK5 0UrX9IYNNRjAgRsNUBxzggDGYoy5WAJkV4a1aIoOE3EOcAFkqIwTUiEWgiEa4oqBWIG1Z4bO+Iw5 sCzaWCfppE16wie0+APS9kU1VwLYNwLkZktHNXL35hKMeI/4KH/fuG06sIkTJxsb0I55wiyYBwQR 4YAqgGV3NC4n0DvLWI/7GJFNWAMYsEIS4wDkZwIWs5D4pwINEAFExCkPUAHJkmly4mmRExGP1jti Um24QhZIQwJlYUQISGxoJYBZQTAbwmm4YZKQUYAC+FpxJ5FESYM1IHIvMCT/eAJnw3ZMNJJhhla8 dokC0DZNMoT/SeKSerMz7OQz11FHJCld76VPKNgdU+M0A3An1eE4Gqg0YCkp9LRi/YFDT5MsDyAA k5OORbmXjRAPEucCDrGUKJA+TaeFGNgoloEvYzYdC8Be1iKAO9YdWpklY1la43JOSXMdosJQ9iUd hjEefLFZ7wgiN6ON/MiXqLkI8UBw0kM9N3A9D8lv7khE0rFiFIcvETYmZUJn3SIb2YJZmAVGTFOZ DMkdvoRZzzWT9sFiebQqwAkBhmEd6fQ7m0OPX5ea2Cl6sGWILECYN4BCsgcY7jJOjUJjivlV0PEu 8LJKFlUW/VMkPTUA6NSJBfMOQPU28fIl1NJTCpBjvENsXAJJ/w1gUEOZnQa6BuvAmsfCnTegoNdJ AjpTbbf1HeMEKQNaHS+SJAUjKvKxiWWhHr0DSeI0n13IJNDRoRCQYGXRoaI1NeL0YNrRHx4aHpGC Y0KZZQeao2pgDg3AAUvpoDTAQOd2NdDJGKBhTcPoaA/VF8WxAGK0F8ZYAkxKjHQ0GEcGGUl6TRAC URUAIcGYIzoapuRDA/7lAj0qmC0AUEMqpXyYSWL6pmJgDtPHAmXKAy20piSgWzMEp3y6BeZwcSww pzrEQwpXin16qFZgDv6kAt6nc4XqhIgaqZFAEAGVAouKA4GEp9pge5L6puZgcC1QSxhDF97YqaZq ajMApCagpv8FGp6QeqqwegRyKpAm0Kj49nqy2YyxuquFGQM31wLeqQOx9aCvyqvGulo0cKYtgHIC RmCPyo3HGq3ISgPBWnqEZppo+IfSuq2t+gJCygKgmgOspqkocKQh2FC3+IsFMIx8kXfWpK4R9YtE wa30enpmcaNcYp0vYG7PugIb+F711EjBGbBtRkTHmVlKBJzT6ZzAiVLJdJyxeQWcWq8RGQ/Tk5EB EK42sAAZgKbZqgL/mlp70T0ha4IjQKMj0CUPBWT3x4LzSrEw66pB6gATN4cWh2rkejXJQyolu2HV cn7TkpYkgBsd1ZBt+gUTG7OmqBCfMnHMSpFZh6MtECuzMkf/tyWlrWJHT6JjqWWlDsWwwfmzZpC0 SnuGFvEAGBmotMoCv9qr/rqzI4u11aK1JzkqtpJMUGIyX2spR+sFZFu2MogRw3I+Hkl0M3B0HsuE LtCzPEuyrdK3KAsiUNKyfdsFfwu4YbERC6AAGVCVKoABVfcCRxW1/QqycOuzfvG4KbBMivEzjKW3 neSyY3C5mHsUKjEBFrB3lBMBlZpjt7YCaXd59qoCawOPv/E+xUtsFlkCdYKcnAJawOkyAfaytVu9 JJATWMMADrC8v7N3fSelgCd4egmt1lu7XLVilJcHloeqxVq+MUu7Ttm+7kux8Ou24FC/QPAP+bi/ /AsQDGqg//ibswkxeuSbnQFcuttwwN26qWKqwFJbwBOprVqEiP1bwRX8vwLskdMyk2R0KR28H0/i NEdkkkqhbGVhwtgaAA4cBis8vAmsD5EnRBl8LHDrkkPjwe9RRBv4JO9RINZRY5B0MKJCm1qbwi2M tAQswVoRwwQ0rTPAuHabunEboEObPEEyHQvZs7lqqBF8vzBMDSyxDhv4izt7pI2bsuLmXh+Vxd+m uPJbXmPBkVAmEUx8PE4sA7HynGUsxdGlsPv0Rsa2RA/LIC6jxaeoq4/4JKaBGrDIGq7BvkfwrrUh GLdxGLAkG5OMRsABGRHlOZcxPF88wHccA1DctXx8W8tFAv/maWyghcUnYMgz6AOjuQKzPMtUxgLz qAVSoSAM4iBGhAISQiFhdI0ZsiGDJwQe4lQvCqLs0R0UGh46lk9fwswt8h7xESPTMSP5sR9zCaYp AJ5uGr94fLpMYsZTrBVp7CVsTKxDtJRYlkQkYJ0OqctCkHZ1u7p2Yo57UqkuzAOAorzt1j+FsiqH kitTJdCMAmFaQsXTbE9icimku8AMU8drNMowUMrlfMqwfLIQ8IHgxVYIs7LsbAIfKQA5mUcwmTkt yRxFUtIn/ZJk8s7DGAGTk5MORkRIYkRhlFIsnUfVBjpAaWz4isDqQyw1G5DKQpAWzQPQEirT0iq9 qZjZIrL/UH0yimRXAIM1dHipS/0rYFyQybrBMmksjwYYcsxs5gEZJvxsZ52teJkat6UAOuOVGEaS RYst5jQ0c52ZdX1ReRWaJt0kA9o0RZNg2YEAazlkINglf/cOcUlP/rE3domXbS2zOwAxAJa2MLCR Xb0D4wlm8tI39QIyQqOFJDPaTMNJUaPVkdIygvPNFB3O9ksVyjietxmZUteFUXUv+AUiuZbbd/jX jaKBfoOZWcgxCsaD08EpUcUo/ypWcwKdxjzbNwA2s5hsZEMDTUndO6A2OIMebgM3eDOFc+NkdpM0 4z0mhM03WQ2dgDMAGEvUE/3VnZ0IpYBD7nVPzymc6i3V/+YESfuN3MKdN8YZvZ2YifYRX1h2sO4t nZxTnRIdpBW3AoFpA9XakYizSrHTaXq60rZTaq/I4bujOZFmb8S2tuMrhLHdTWBtlI0xnpjRKO/p ONIhn/hinr2dJEgCnzU+4MNpn1iCn8iNKAdNKLryn48jKYBDoP1MA9DTAhf7mtjD3VXQxnEaytIQ xvkXoWGGJSAqItNRHWIpVjXSY43y5SJqHT7e32LFH/OhorxNY5bIzP0RdTE6JuZBoxE61KdZQ4Tb nXzur5Xb5+KDoFgODS2ehsRLZU9qgJvEpLsY6WzT6IQRpUPrSnhipRWApc+2pLp4Sr/Rpb9RGJD8 iPgztf8Y7D7Ca9leDNv0HeF0oBCjeAobcUAmAKg48K0Y3r7gHNY67GghjEYfbAJEFOhaUdmJ3uT2 nQPw/AoUZEEtIGU8wNW7p329/sSK9EiEcdUkoV0MMi0b6EvaTgN1BnrJ3pelygLX7jncawN3Kt+v vsQ+ECtiomL0/uJAdrSYBWrTiQD+bhigThjSZKWPxrNGmk3nDu+xnu4rwK+0jOIy0LYPrMRdUzrF 5B/wce8MI5bFZU3LZAIPeyS+RCvYtVItVW24JVNMQlMJv+uK/sYvoKolYKtuN8N7OjoWX7VhdvH3 nkh3kDwaz1yK9XfBI12DBQCFNSZbkljDeJON1fITj+7/iKwCGutHEQsDmarw/ZU7ybq2K+k09Ozq PRArct1YGh8rUWVaoIEAF88wIOLlotVISmZdKfVcm9VdovUOg+Ys9OeIFKh/suQCosr3c1EE74KJ C4vHlbvDfZYFvbDupFxMwAQdGt8RipFhII8lgZVWAL7x9WFiIwZdLCbwq4LsI13RXDwD1L6q/Ozy p+8DTyZr1UQx0FSloSRrtb8XWwiMEKXJaFTqOL9AF79SjCIryXTxmF8CdgdTb28ldiT3xAYAeoYq W/JnKyVops/qsk3xNoDrjJrCLMB9bhwE39ahOmbnbwSiotUvMCq0uk9H8EJPmyhP85EVKDqN4qzi PvBo/+tCOSup4SAQBIYgmudiDKUosKmRIkFjzK4YGblhRKLvJBwSiyaAMalcMpvOJzSJjFKr1ivW Oc0GLKwl48E9FSDc7ZhYIIhqvQbCHIiYCQ0ae1AREQrlAMFMA5vJ2sAAwUCLyB9ESQMcYYVcmhHa UIRD5SZnp9KlZ6goFuio6elZ2gNDk4DFpgFFqimhW5+AgkkgJcSaSe8fgbBwQSGlwmvEAARzQFki QgHAMKFpqUkmqvb20jX3tzVV9IwVuRIcWYE5zR34lXeUxkG70sLBZu/s6MpJ31/Agjq/AhYD5Ecg IzKUHtT58aeggF6UCoYzks0dRm3wMnLMsnEIgmXMFP9VyacEUSEAzCD0GbGjI5SPTy4kaGKSi70x MrMgIGAhwoNldxwVGLDDgoUCChRNimAh0B9kBSKSIdDDAIE9WQs87aJg6iuiFnKdgncRJtpKO9Oy lQIFghgRY0tSLBJwwA9n1aj2aMtkLZN/SyqQ5KIAg05trhTEpdGjsQAS2HyYacAC15c2V23wiPEy 8hcDjDUmOev3dEzUqpsA7ilkgYhDEF4qYPYqAEMIhwLkqw3h9okeyhhV+9N3NRHATPQ02VDXygQ7 iVV7mUMJOevSmrBzT979uwjAVGn4KVadN4IHt70ElGumV1C5mXnDJgB7zdXZLsGH34RgAz1JlBFg FTT/paHcNxYcsg5/3lm0XYPcIRjhN4Ax1AIzbEAAm0sWxFXGA2Q1UgBWGRY2h1VY7YCfcEC8BN6E ShDWBAZkWVGjWhTq2N+DOyIXo48VNbGAdMShJ4ICmOWAF0l08EbiV36s44UfD7DhixDHwdhJLE2c R0UCF2wCZJAZmQVhmW2RmWYnytX2AwIWmIEMQPZNcscAYkAQQQPN9ELHHV8CcgJcWAb34ndrGqEA AwQS0QADNj6BwQWOksLmlj1iypaim073BEME6IfkIXsEIMAhL4W0wlEzBDVqDsCdqkBIQ+DAX6dF MJSXEhg4wGASCwwg6YGeSqidsWjlmqwVywZ7W5LM/2ohSgEODAAsJj5xaIQGBmRgKifOSjsmsuNi JK652Z3i24npFoHuEBUIQ0EE2xIhwAEQYMArI6hyYICln7qrbLkDbwOvwe8mTPApCBjgwAEAoDmE Ug4AcPHFv4EbCsILp6apx0KG7EnHI/9lsoMoV1iwyuG27PLLB8fM48xlsVyzRzjr88S13xgAXBy6 SXbqfKiVHOHROgcAjzQYO/001FFLPTXVVVt9NdZZW82B0pdCwZCsqLDE4Rp+0JGLlqsljWvXoqzd NtxUILjnQimUEBk5D/Qwgw5XdXZHA0AZsPGSxxlqHKKqvZ1o3G02/jjDTsTRRVy6cQVBBVS5UoCV 5P8pZcYkU5mxhgDyMohXe3qZgOp+2ImrjG78QnFraSeKdFycH0Mu8O69y/yEAjtMIkI+P/MRADmH y2GSh/8kJQQhezozjTAQzJC24pUYsGcB8hLuBPZEyNkYAQ/4Iacz153se87su2/zE4kcQsAPxb/E Bh3DEhJHQdX08I8B6iIA+elGdVlKnNEqUaQ5vAQG5ogMuCKjg9ZBkAj0K0xLjicYdb2vCovr4O4s VBjj2e94mDseb3h1wgDgBYB1sZ4uFmAoE4TvNMty0hACUgHT8UYAZSiBVFDSF6LkSQi4oA8fCuKL Da4PhFH4oBMbB5giioBIT2odG5CigkAs4yqBswr/+lxoAteYYCwzdNGxxrA9DBXwOOr5R3sIYcX/ AeNChCqGAshCDbikT3dRnNYfA+m1JjynGOSAREKcYUjklacgMqTIIU+ADhOg4znsSCMX/tEAzuXB VD+00S504ZI1rOREPZENITJoDD8K8hOtfOUTYdmNSvBRBPIaAVlE8w8nSScCbNibHBaQmS8VUZWM UN8sZekWZTLTEs1UWBrKMBtEPAICebQPCy2wvT0wZClm6IsWa8mHbV3ImH18AhRfls5nomydKkPX VApZFz+QTYbtQaQzKmAvZwihGJZEHivZuTSBEtSd7YTJCriCQG4Y1GQNJajBHhoyibbAAI05l9Yy SqrRjXK0ox6NGkTZSdGFjTSkJj0pR0oaUZSytKUrNalKXSrTmR7ooza9KU5zmjWa8rSnPv0pUIMq 1KEStahGPSpSk6rUpTI1TSEAADs= ------=_NextPart_000_0013_01CB647F.7270F260--